找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Singular Semi-Riemannian Geometry; Demir N. Kupeli Book 1996 Springer Science+Business Media B.V. 1996 Riemannian geometry.Signatur.Tensor

[复制链接]
查看: 20874|回复: 45
发表于 2025-3-21 19:51:15 | 显示全部楼层 |阅读模式
书目名称Singular Semi-Riemannian Geometry
编辑Demir N. Kupeli
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Singular Semi-Riemannian Geometry;  Demir N. Kupeli Book 1996 Springer Science+Business Media B.V. 1996 Riemannian geometry.Signatur.Tensor
描述This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced an
出版日期Book 1996
关键词Riemannian geometry; Signatur; Tensor; covariant derivative; differential geometry; manifold
版次1
doihttps://doi.org/10.1007/978-94-015-8761-7
isbn_softcover978-90-481-4689-5
isbn_ebook978-94-015-8761-7
copyrightSpringer Science+Business Media B.V. 1996
The information of publication is updating

书目名称Singular Semi-Riemannian Geometry影响因子(影响力)




书目名称Singular Semi-Riemannian Geometry影响因子(影响力)学科排名




书目名称Singular Semi-Riemannian Geometry网络公开度




书目名称Singular Semi-Riemannian Geometry网络公开度学科排名




书目名称Singular Semi-Riemannian Geometry被引频次




书目名称Singular Semi-Riemannian Geometry被引频次学科排名




书目名称Singular Semi-Riemannian Geometry年度引用




书目名称Singular Semi-Riemannian Geometry年度引用学科排名




书目名称Singular Semi-Riemannian Geometry读者反馈




书目名称Singular Semi-Riemannian Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:16:03 | 显示全部楼层
Singular Semi-Riemannian ManifoldsLet . be an .-dimensional manifold and let . be a metric tensor of type in (.) in .. Then we will call (.) a . (.). If . is of type (0, .) we will call (.) a . (.).
发表于 2025-3-22 01:27:32 | 显示全部楼层
发表于 2025-3-22 06:50:15 | 显示全部楼层
发表于 2025-3-22 10:15:12 | 显示全部楼层
Singular Kähler ManifoldsIn this chapter, we will investigate the structure of Kähler manifolds with degenerate Hermitian metric tensors.
发表于 2025-3-22 16:49:13 | 显示全部楼层
Preliminaries III: Linear Algebra of Quaternionic Inner Product SpacesIn this chapter, we will give a review of linear algebra of quaternionic inner product spaces parallel to Preliminaries II in Part II.
发表于 2025-3-22 19:17:05 | 显示全部楼层
Singular Quaternionic Kähler ManifoldsIn this chapter, we will investigate the structure of quaternionic Kähler manifolds with degenerate quaternionic metric tensors.
发表于 2025-3-22 21:41:07 | 显示全部楼层
Quaternionic Semi-Riemannian Submanifolds of Nondegenerate Quaternionic Kähler ManifoldsIn this chapter, we will investigate the structure of quaternionic semi-Riemannian submanifolds of nondegenerate quaternionic Kähler manifolds. In fact, we will show that such manifolds are totally geodesic.
发表于 2025-3-23 05:13:49 | 显示全部楼层
发表于 2025-3-23 07:49:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 15:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表