用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Singular Quadratic Forms in Perturbation Theory; Volodymyr Koshmanenko Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v

[复制链接]
查看: 36609|回复: 35
发表于 2025-3-21 18:29:47 | 显示全部楼层 |阅读模式
书目名称Singular Quadratic Forms in Perturbation Theory
编辑Volodymyr Koshmanenko
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Singular Quadratic Forms in Perturbation Theory;  Volodymyr Koshmanenko Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v
描述The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturba­ tion terms with singular properties. Typical examples of such expressions are Schrodin­ ger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P(
出版日期Book 1999
关键词Boundary value problem; Hilbert space; Operator theory; functional analysis; scattering theory
版次1
doihttps://doi.org/10.1007/978-94-011-4619-7
isbn_softcover978-94-010-5952-7
isbn_ebook978-94-011-4619-7
copyrightSpringer Science+Business Media Dordrecht 1999
The information of publication is updating

书目名称Singular Quadratic Forms in Perturbation Theory影响因子(影响力)




书目名称Singular Quadratic Forms in Perturbation Theory影响因子(影响力)学科排名




书目名称Singular Quadratic Forms in Perturbation Theory网络公开度




书目名称Singular Quadratic Forms in Perturbation Theory网络公开度学科排名




书目名称Singular Quadratic Forms in Perturbation Theory被引频次




书目名称Singular Quadratic Forms in Perturbation Theory被引频次学科排名




书目名称Singular Quadratic Forms in Perturbation Theory年度引用




书目名称Singular Quadratic Forms in Perturbation Theory年度引用学科排名




书目名称Singular Quadratic Forms in Perturbation Theory读者反馈




书目名称Singular Quadratic Forms in Perturbation Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:30:41 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/s/image/867904.jpg
发表于 2025-3-22 00:25:18 | 显示全部楼层
https://doi.org/10.1007/978-94-011-4619-7Boundary value problem; Hilbert space; Operator theory; functional analysis; scattering theory
发表于 2025-3-22 07:57:58 | 显示全部楼层
发表于 2025-3-22 08:43:02 | 显示全部楼层
Applications to Quantum Field Theory,Models of quantum field theory are sources of numerous mathematical theories. Thus, in particular, the theory of singular perturbations is closely related to problems of quantum field theory.
发表于 2025-3-22 16:05:13 | 显示全部楼层
发表于 2025-3-22 20:54:20 | 显示全部楼层
g if and how such rhetorics might live up to their promise to know ‘the lessons’ and to enable learning, offering a revised theory of collective learning processes.978-1-137-48322-5Series ISSN 2634-6257 Series E-ISSN 2634-6265
发表于 2025-3-23 01:15:17 | 显示全部楼层
Volodymyr Koshmanenkoanalysis and interpretation rarely used in the field of sociThis book reconstructs how claims to know ‘the lessons’ from past wrongdoings are made useful in the present. These claims are powerful tools in contemporary debates over who we are, who we want to be and what we should do. Drawing on a wid
发表于 2025-3-23 03:00:12 | 显示全部楼层
发表于 2025-3-23 08:35:33 | 显示全部楼层
Book 1999ions devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturba­ tion terms with singular properties. Typical examples of such expressions are Schrodin­ ger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 20:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表