找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Singular Integrals and Fourier Theory on Lipschitz Boundaries; Tao Qian,Pengtao Li Book 2019 Springer Nature Singapore Pte Ltd. and Scienc

[复制链接]
查看: 54393|回复: 41
发表于 2025-3-21 16:49:33 | 显示全部楼层 |阅读模式
书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries
编辑Tao Qian,Pengtao Li
视频video
概述States systemically the theory of singular integrals and Fourier multipliers.on the Lipschitz graphs and surfaces.Elaborates the basic framework, essential thoughts and main results.Reveals the equiva
图书封面Titlebook: Singular Integrals and Fourier Theory on Lipschitz Boundaries;  Tao Qian,Pengtao Li Book 2019 Springer Nature Singapore Pte Ltd. and Scienc
描述.The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers. .
出版日期Book 2019
关键词Singular integrals; Fourier multipliers; Lipschitz curves; Clifford analysis; Fourier transform; Lipschit
版次1
doihttps://doi.org/10.1007/978-981-13-6500-3
isbn_softcover978-981-13-6502-7
isbn_ebook978-981-13-6500-3
copyrightSpringer Nature Singapore Pte Ltd. and Science Press 2019
The information of publication is updating

书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries影响因子(影响力)




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries影响因子(影响力)学科排名




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries网络公开度




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries网络公开度学科排名




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries被引频次




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries被引频次学科排名




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用学科排名




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries读者反馈




书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:31 | 显示全部楼层
发表于 2025-3-22 01:40:28 | 显示全部楼层
发表于 2025-3-22 05:14:49 | 显示全部楼层
发表于 2025-3-22 09:56:42 | 显示全部楼层
发表于 2025-3-22 13:42:51 | 显示全部楼层
发表于 2025-3-22 17:19:34 | 显示全部楼层
978-981-13-6502-7Springer Nature Singapore Pte Ltd. and Science Press 2019
发表于 2025-3-23 01:02:47 | 显示全部楼层
发表于 2025-3-23 05:13:19 | 显示全部楼层
发表于 2025-3-23 06:38:00 | 显示全部楼层
Convolution Singular Integral Operators on Lipschitz Surfaces,e question. In 1994, C. Li, A. McIntosh and S. Semmes embedded . into Clifford algebra . and considered the class of holomorphic functions on the sectors ., see [.]. They proved that if the function . belongs to ., then the singular integral operator . with the kernel . on Lipschitz surface is bounded on ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表