找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Simulated Evolution and Learning; 8th International Co Kalyanmoy Deb,Arnab Bhattacharya,Kay Chen Tan Conference proceedings 2010 Springer B

[复制链接]
查看: 10834|回复: 63
发表于 2025-3-21 18:08:34 | 显示全部楼层 |阅读模式
书目名称Simulated Evolution and Learning
副标题8th International Co
编辑Kalyanmoy Deb,Arnab Bhattacharya,Kay Chen Tan
视频video
概述State-of-the-art research.Fast-track conference proceedings.Unique visibility
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Simulated Evolution and Learning; 8th International Co Kalyanmoy Deb,Arnab Bhattacharya,Kay Chen Tan Conference proceedings 2010 Springer B
出版日期Conference proceedings 2010
关键词active learning; artificial neural network; bio-inspired systems; cellular automata; evolution; evolution
版次1
doihttps://doi.org/10.1007/978-3-642-17298-4
isbn_softcover978-3-642-17297-7
isbn_ebook978-3-642-17298-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Berlin Heidelberg 2010
The information of publication is updating

书目名称Simulated Evolution and Learning影响因子(影响力)




书目名称Simulated Evolution and Learning影响因子(影响力)学科排名




书目名称Simulated Evolution and Learning网络公开度




书目名称Simulated Evolution and Learning网络公开度学科排名




书目名称Simulated Evolution and Learning被引频次




书目名称Simulated Evolution and Learning被引频次学科排名




书目名称Simulated Evolution and Learning年度引用




书目名称Simulated Evolution and Learning年度引用学科排名




书目名称Simulated Evolution and Learning读者反馈




书目名称Simulated Evolution and Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:32:26 | 显示全部楼层
发表于 2025-3-22 04:26:52 | 显示全部楼层
A Bi-criterion Approach to Multimodal Optimization: Self-adaptive Approachired for the evolutionary algorithm). We present successful results on a number of different multimodal optimization problems of upto 16 variables to demonstrate the generic applicability of the proposed algorithm.
发表于 2025-3-22 07:35:25 | 显示全部楼层
发表于 2025-3-22 12:28:41 | 显示全部楼层
发表于 2025-3-22 16:28:11 | 显示全部楼层
发表于 2025-3-22 21:02:35 | 显示全部楼层
A Parallel Algorithm for Solving Large Convex Minimax Problemssteepest-descent rapidly and using Armijo’s condition proceeds towards the solution. Owing to the highly parallel nature of the algorithm, it is highly suitable for large minimax problems. Algorithm is implemented on Nvidia Tesla C1060 graphics card using CUDA and numerical comparisons with RGA & CFSQP are presented.
发表于 2025-3-23 00:14:13 | 显示全部楼层
发表于 2025-3-23 04:27:43 | 显示全部楼层
发表于 2025-3-23 05:46:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表