找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sheaves in Geometry and Logic; A First Introduction Saunders Mac Lane,Ieke Moerdijk Textbook 1994 Springer-Verlag New York, Inc. 1994 Algeb

[复制链接]
楼主: metabolism
发表于 2025-3-25 06:45:52 | 显示全部楼层
发表于 2025-3-25 08:10:01 | 显示全部楼层
发表于 2025-3-25 15:37:25 | 显示全部楼层
First Properties of Elementary Topoi,order certain other basic properties. Most of these properties have already been seen to hold for our typical categories discussed in Chapter I, and for the categories of sheaves on a space (Chapter II) or on a site (Chapter III).
发表于 2025-3-25 17:51:13 | 显示全部楼层
Geometric Morphisms, spaces, where a continuous map .→. gives rise to an adjoint pair Sh(X) ⇄Sh(Y) of functors between sheaf topoi. The first two sections of this chapter are concerned mainly with a number of examples, and with the construction of the necessary adjunctions by analogues of the ®-Hom adjunction of module
发表于 2025-3-25 23:12:43 | 显示全部楼层
发表于 2025-3-26 01:10:06 | 显示全部楼层
Localic Topoi,related class of topoi those of the sheaves on a so-called “locale”. In the case of a topological space ., a sheaf is a suitable functor on the lattice . of open sets of ., where the lattice order is defined by the inclusion relation between open sets. Thus the notion of a sheaf can be explained jus
发表于 2025-3-26 07:21:50 | 显示全部楼层
Geometric Logic and Classifying Topoi,on,Geometric logic is the logic of the implications between geometric formulas: .where the arrow here is for “implication” and and z/) are geometric. Many mathematical structures can be axiomatized by formulas of this form (1).For instance, local rings are axiomatized by the usual equations for a co
发表于 2025-3-26 10:33:39 | 显示全部楼层
Textbook 1994 the various original sources. Moreover, a number of people have assisted in our work by pro­ viding helpful comments on portions of the manuscript. In this respect, we extend our hearty thanks in particular to P. Corazza, K. Edwards, J. Greenlees, G. Janelidze, G. Lewis, and S. Schanuel.
发表于 2025-3-26 14:34:50 | 显示全部楼层
发表于 2025-3-26 20:39:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表