找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Shape in Medical Imaging; International Worksh Christian Wachinger,Beatriz Paniagua,Jan Egger Conference proceedings 2023 The Editor(s) (if

[复制链接]
楼主: 本义
发表于 2025-3-23 12:14:57 | 显示全部楼层
Qiuchi Han,Xiuxiu Hu,Pingsheng Chen,Siyu Xiaroblemstellung entsteht. “... (P)rofessional practice has at least as much to do with finding the problem as with solving the problem found...” (ebd., S.18). Es geht nicht bloß darum, ein schlecht definiertes Problem zu präzisieren, sondern eine geeignete Problemstellung zu (er)finden — die dann zum
发表于 2025-3-23 17:30:31 | 显示全部楼层
发表于 2025-3-23 19:31:14 | 显示全部楼层
,Anatomy Completor: A Multi-class Completion Framework for 3D Anatomy Reconstruction,e DAE to learn the . mapping more effectively and further enhances the learning of the residual mapping. On top of this, we extend the DAE to a multiclass completor by assigning a unique label to each anatomy involved. We evaluate our method using a CT dataset with whole-body segmentations. Results
发表于 2025-3-24 00:42:17 | 显示全部楼层
,Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in Colonoscopy,er from frequent tracking failures, and estimates a global consistent 3D model; all within a single framework. We perform an extensive experimental evaluation on multiple synthetic and real colonoscopy videos, showing high-quality results and comparisons against relevant baselines.
发表于 2025-3-24 04:03:14 | 显示全部楼层
发表于 2025-3-24 08:20:13 | 显示全部楼层
发表于 2025-3-24 11:41:53 | 显示全部楼层
,Unsupervised Correspondence with Combined Geometric Learning and Imaging for Radiotherapy Applicatirly to the model with direct inclusion of image features. The best performing model configuration incorporated imaging information as part of the loss function which produced more anatomically plausible correspondences. We will use the best performing model to identify corresponding anatomical point
发表于 2025-3-24 16:08:33 | 显示全部楼层
发表于 2025-3-24 22:32:11 | 显示全部楼层
,Geometric Learning-Based Transformer Network for Estimation of Segmentation Errors,inth structure by simulating erroneous 3D segmentation maps. Our network incorporates a convolutional encoder to compute node-centric features from the input .CT data, the Nodeformer to learn the latent graph embeddings, and a Multi-Layer Perceptron (MLP) to compute and classify the node-wise errors
发表于 2025-3-25 00:10:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表