找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Serial Rings; Gennadi Puninski Book 2001 Springer Science+Business Media Dordrecht 2001 Finite.Morphism.algebra.commutative property.endom

[复制链接]
楼主: NO610
发表于 2025-3-26 21:47:12 | 显示全部楼层
Basic Notions,Let the rings under consideration be assumed to be associative with unit and all the modules be unitary and almost everywhere right. So we shall write the homomorphisms of right (left) modules from the left (right).
发表于 2025-3-27 02:10:52 | 显示全部楼层
发表于 2025-3-27 08:32:39 | 显示全部楼层
Classical Localizations in Serial Rings,In this section we show that ‘almost all’ classical localizations in a serial ring are the localizations at a semi-prime Goldie ideal. For an ideal . of a ring . by .(.) we denote the set of elements of . whose images are nonzero divisors in ..
发表于 2025-3-27 12:26:04 | 显示全部楼层
Serial Prime Goldie Rings,Let us recall that . = Jac(.), . = 1,..., ..
发表于 2025-3-27 17:26:53 | 显示全部楼层
发表于 2025-3-27 17:55:12 | 显示全部楼层
发表于 2025-3-28 01:05:20 | 显示全部楼层
Indecomposable Pure Injective Modules over Serial Rings,Let . be an indecomposable idempotent of a serial ring .. A pp-type .(.) is called an . if . | . ∈ .; and pp-formula .(.) is an . if . → . | .. For example, the pp-formula . | . for . ∈ . is an .-formula. A . is a pair 〈., .〉, where . ⊂ . is a right ideal and . ⊂ . is a left ideal of ..
发表于 2025-3-28 05:53:59 | 显示全部楼层
Super-Decomposable Pure Injective Modules over Commutative Valuation Rings,A module . is called . if it contains no indecomposable direct summand. In particular, . = . ⊕ ., . = . ⊕ ., . = . ⊕ . for nonzero ., and so on.
发表于 2025-3-28 09:07:51 | 显示全部楼层
Pure Injective Modules over Commutative Valuation Domains,In this section we classify in particular, pure injective modules .(.) over commutative valuation domains. But first let us recall some definitions and facts.
发表于 2025-3-28 10:32:26 | 显示全部楼层
Pure Projective Modules over Nearly Simple Uniserial Domains,First let us recall some results about a decomposition of projective modules and an equivalence of categories which will be used in the sequel.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-1 09:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表