找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sensitivity Analysis for Neural Networks; Daniel S. Yeung,Ian Cloete,Wing W. Y. Ng Book 2010 Springer-Verlag Berlin Heidelberg 2010 Adalin

[复制链接]
楼主: Washington
发表于 2025-3-23 12:06:38 | 显示全部楼层
Sensitivity Analysis with Parameterized Activation Function,r attempts to generalize Piché’s method by parameterizing antisymmetric squashing activation functions, through which a universal expression of MLP’s sensitivity will be derived without any restriction on input or output perturbations.
发表于 2025-3-23 17:05:37 | 显示全部楼层
发表于 2025-3-23 20:31:17 | 显示全部楼层
Critical Vector Learning for RBF Networks,bility as well as the construction of its architecture. Bishop (1991) concluded that an RBF network can provide a fast, linear algorithm capable of representing complex nonlinear mappings. Park and Sandberg (1993) further showed that an RBF network can approximate any regular function. In a statisti
发表于 2025-3-23 23:58:49 | 显示全部楼层
发表于 2025-3-24 03:49:01 | 显示全部楼层
Applications,odologies for reducing input dimensionality and summarize them in three categories: correlation among features, transformation and neural network sensitivity analysis. Furthermore, we propose a novel method for reducing input dimensionality that uses a stochastic RBFNN sensitivity measure. The exper
发表于 2025-3-24 10:21:12 | 显示全部楼层
Hyper-Rectangle Model, mathematical expectation used in the hyper-rectangle model reflects the network’s output deviation more directly and exactly than the variance does. Moreover, this approach is applicable to the MLP that deals with infinite input patterns, which is an advantage of the MLP over other discrete feedforward networks like Madalines.
发表于 2025-3-24 11:52:15 | 显示全部楼层
发表于 2025-3-24 17:47:30 | 显示全部楼层
Daniel S. Yeung,Ian Cloete,Wing W. Y. NgThis is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks..Includes supplementary material:
发表于 2025-3-24 22:40:01 | 显示全部楼层
发表于 2025-3-25 03:02:27 | 显示全部楼层
https://doi.org/10.1007/978-3-642-02532-7Adaline; Backpropagation algorithm; Hyperrectangle model; Learning; Multilayer perceptron (MLP); Neural n
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 06:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表