找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sensitivity Analysis; An Introduction for Emanuele Borgonovo Book 2017 Springer International Publishing AG, part of Springer Nature 2017

[复制链接]
楼主: Gullet
发表于 2025-3-26 22:23:34 | 显示全部楼层
发表于 2025-3-27 02:18:26 | 显示全部楼层
Estimation and a Computational ShortcutThe complete dissection of a finite change requires . model evaluations, which is the number of finite change sensitivity indices of all orders.
发表于 2025-3-27 05:32:20 | 显示全部楼层
Multilinear Functions: Taylor Versus Functional ANOVA ExpansionsIn this section, we present an analysis of the interaction properties of multilinear functions. Our aim is to show that, for a multilinear function, the integral (functional ANOVA)and Taylor expansions coincide.
发表于 2025-3-27 10:28:35 | 显示全部楼层
What to Use and WhenGiven our discussion of the various methods above, a natural question is: What is the (best) method to use? We phrase this question with “best” in parentheses because we do not believe that there is an absolutely “best sensitivity method”. In fact, even the answer to the simpler question “of which method should be used” is multifaceted.
发表于 2025-3-27 17:03:10 | 显示全部楼层
Value of InformationThis section investigates the concept of expected value of perfect information. The definition we present here is the definition used in classical decision-analysis courses for decision making under risk.
发表于 2025-3-27 21:44:26 | 显示全部楼层
Local Sensitivity Analysis with ConstraintsThis chapter, which is our last on deterministic methods, addresses the removal of a typical assumption in sensitivity analysis.
发表于 2025-3-28 00:07:34 | 显示全部楼层
Uncertainty QuantificationThe importance of properly displaying the analyst/decision maker’s degree of belief about the problem at hand is recognized by several agencies and international institutions.
发表于 2025-3-28 03:52:29 | 显示全部楼层
发表于 2025-3-28 08:58:44 | 显示全部楼层
发表于 2025-3-28 13:05:38 | 显示全部楼层
CDF-Based Sensitivity MeasuresBaucells and Borgonovo (2013) introduce and analyze global sensitivity measures based on cumulative distribution functions (CDFs).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 08:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表