找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Seminar on Stochastic Processes, 1992; E. Çinlar,K. L. Chung,K. Burdzy Book 1993 Springer Science+Business Media New York 1993 Branching p

[复制链接]
楼主: Disclose
发表于 2025-3-25 03:59:23 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-0339-1Branching process; Brownian motion; Gaussian process; Lévy process; Martingale; Random Walk; Stochastic pr
发表于 2025-3-25 07:36:33 | 显示全部楼层
The Martingale Problem for a Differential Operator with Piecewise Continuous Coefficients,Let . be a linear second order elliptic differential operator defined by.with ..),..) bounded and measurable, and a symmetric. Suppose a is uniformly positive definite, i.e. there exist positive numbers µand . such that for all ..,…,y.), and every.
发表于 2025-3-25 15:21:40 | 显示全部楼层
发表于 2025-3-25 16:49:37 | 显示全部楼层
On the Covering Time of a Disc by Simple Random Walk in Two Dimensions,Let .(.) denote simple random walk taking values in Z.. It is well known that .(.) is recurrent and hence every finite set is eventually covered by the path of the walk. Let .. be the discrete ball of radius ., ., and let .. be the covering time of ..,.where..
发表于 2025-3-25 20:42:03 | 显示全部楼层
发表于 2025-3-26 03:54:38 | 显示全部楼层
Critical Random Walk in Random Environment on Trees of Exponential Growth,This paper studies the behavior of RWRE on trees in the critical case left open in previous work. For trees of exponential growth, a random perturbation of the transition probabilities can change a transient random walk into a recurrent one. This is the opposite of what occurs on trees of sub-exponential growth.
发表于 2025-3-26 06:44:33 | 显示全部楼层
发表于 2025-3-26 10:39:12 | 显示全部楼层
发表于 2025-3-26 15:36:19 | 显示全部楼层
发表于 2025-3-26 20:06:56 | 显示全部楼层
Some Path Properties of Iterated Brownian Motion,ed Brownian motion” or simply IBM. Funaki (1979) proved that a similar process is related to “squared Laplacian.” Krylov (1960) and Hochberg (1978) considered finitely additive signed measures on the path space corresponding to squared Laplacian (there exists a genuine probabilistic approach, see, e
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 23:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表