找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Seminar on Stochastic Processes, 1988; E. Çinlar,K. L. Chung,J. Glover Book 1989 Birkhäuser Boston 1989 Brownian excursion.Brownian motion

[复制链接]
楼主: 交叉路口
发表于 2025-3-25 06:25:55 | 显示全部楼层
发表于 2025-3-25 10:59:50 | 显示全部楼层
发表于 2025-3-25 15:18:34 | 显示全部楼层
发表于 2025-3-25 18:56:55 | 显示全部楼层
,Reminiscences of some of Paul Lévy’s ideas in Brownian Motion and in Markov Chains,We begin with a resume. Let {. ≥ 0} be a semigroup of stochastic matrices with elements p.(., where . is a countable set, satisfying the condition .. It is known that .(0) = . exists and . The state . is called . if . < +∞, and . if . = +∞ (Lévy’s terminology). The matrix .) is called . when equality holds in (3) for all ..
发表于 2025-3-25 20:26:27 | 显示全部楼层
发表于 2025-3-26 01:49:32 | 显示全部楼层
发表于 2025-3-26 07:48:33 | 显示全部楼层
The Independence of Hitting Times and Hitting Positions to Spheres for Drifted Brownian Motions,A drifted Brownian motion X. is a diffusion process on .. whose infinitesimal generator has the form . where ... is the usual Laplace operator and . is a smooth vector field on ... When b ≡ 0, X. becomes the usual n-dimensional Brownian motion.
发表于 2025-3-26 08:35:41 | 显示全部楼层
A Maximal Inequality,Let X be a uniformly integrable, cadlag non-negative regular supermartingale. Such a process X has the representation . where A. is continuous and increasing on the half open interval [0,∞), A. = 0 and A may assign mass to ∞ which is just A. - A. where .. Then we have the maximal inequality.
发表于 2025-3-26 12:42:13 | 显示全部楼层
发表于 2025-3-26 19:46:55 | 显示全部楼层
Right Brownian Motion and Representation of Initial Problem,Let {.: t > 0} be the right Brownian motion on [0, ∞) determined by the transition density: for . ∈ [0,∞). . This is a Markov process having the tendency moving to the right direction. 0 can be a starting point, but is never reached, i.e., {0} is a polar set.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 21:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表