找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Seminar on Stochastic Processes, 1985; E. Çinlar,K. L. Chung,J. Glover Book 1986 Springer Science+Business Media New York 1986 Brownian ex

[复制链接]
楼主: BOUT
发表于 2025-3-26 22:28:51 | 显示全部楼层
,Another Look at Williams’ Decompostion Theorem,ion [5] of a transient diffusion at its global minimum. We use an approximation argument based on the trivial observation that the minimum level of the diffusion is the smallest y such that T. < +∞, T.- = +∞, where T. is the hitting time of y.
发表于 2025-3-27 04:14:35 | 显示全部楼层
发表于 2025-3-27 08:25:17 | 显示全部楼层
发表于 2025-3-27 13:10:34 | 显示全部楼层
The Cereteli-Davis Solution to the H1-Embedding Problem and an Optimal Embedding in Brownian Motionhat BT has law μ and . is integrable. This result, due to Burgess Davis (the classical analogue was first solved by O. D. Cereteli), leads naturally to a stopping time, T, that stochastically minimizes both sup.B. and -inf.B..
发表于 2025-3-27 15:05:20 | 显示全部楼层
Note on the Generator of a Ray Resolvent, Hille-Yoshida type theorem in the context of Ray resolvents. More precisely the problem is the following: Given a compact space K and a linear operator L which maps a subspace.of the space.of continuous functions on K into., find necessary and sufficient conditions on (L,.)which ensure that L is the strong generator of a Ray resolvent on K.
发表于 2025-3-27 19:25:19 | 显示全部楼层
Infinite Excessive and Invariant Measures,sible find another contraction semigroup T. such that . and . The most restrictive condition under which this problem was solved is the finiteness of the excessive measure ν. This condition excludes such an interesting case as the semigroup T. generated by the transition function of Wiener’s process killed at the origin and the Lebesque measure ν.
发表于 2025-3-28 00:55:44 | 显示全部楼层
发表于 2025-3-28 02:27:24 | 显示全部楼层
Edwin Perkinsis a valuable resource for researchers and practitioners, and can serve as a supplemental textbook for graduate and upper undergraduate courses in peace studies and related fields.978-3-642-32480-2978-3-642-32481-9Series ISSN 2194-3125 Series E-ISSN 2194-3133
发表于 2025-3-28 07:39:25 | 显示全部楼层
发表于 2025-3-28 11:04:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 11:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表