找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semi-Supervised Learning and Domain Adaptation in Natural Language Processing; Anders Søgaard Book 2013 Springer Nature Switzerland AG 201

[复制链接]
查看: 54360|回复: 35
发表于 2025-3-21 18:48:52 | 显示全部楼层 |阅读模式
书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing
编辑Anders Søgaard
视频video
丛书名称Synthesis Lectures on Human Language Technologies
图书封面Titlebook: Semi-Supervised Learning and Domain Adaptation in Natural Language Processing;  Anders Søgaard Book 2013 Springer Nature Switzerland AG 201
描述This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ("this algorithm never does too badly") than about u
出版日期Book 2013
版次1
doihttps://doi.org/10.1007/978-3-031-02149-7
isbn_softcover978-3-031-01021-7
isbn_ebook978-3-031-02149-7Series ISSN 1947-4040 Series E-ISSN 1947-4059
issn_series 1947-4040
copyrightSpringer Nature Switzerland AG 2013
The information of publication is updating

书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing影响因子(影响力)




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing影响因子(影响力)学科排名




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing网络公开度




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing网络公开度学科排名




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing被引频次




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing被引频次学科排名




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing年度引用




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing年度引用学科排名




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing读者反馈




书目名称Semi-Supervised Learning and Domain Adaptation in Natural Language Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:11 | 显示全部楼层
Anders Søgaardng zum Kondensator durch sehr große Übertrittsquerschnitte und möglichst kurze Überströmleitungen so klein wie möglich zu machen. Dabei kommt der glückliche Umstand zu Hilfe, daß der vom Kolben gesteuerte Schlitzauslaßquerschnitt so bemessen werden kann, daß ungefähr die dreifache Größe des Querschn
发表于 2025-3-22 04:27:36 | 显示全部楼层
发表于 2025-3-22 06:39:19 | 显示全部楼层
发表于 2025-3-22 11:20:29 | 显示全部楼层
ng zum Kondensator durch sehr große Übertrittsquerschnitte und möglichst kurze Überströmleitungen so klein wie möglich zu machen. Dabei kommt der glückliche Umstand zu Hilfe, daß der vom Kolben gesteuerte Schlitzauslaßquerschnitt so bemessen werden kann, daß ungefähr die dreifache Größe des Querschn
发表于 2025-3-22 15:25:57 | 显示全部楼层
Semi-Supervised Learning and Domain Adaptation in Natural Language Processing
发表于 2025-3-22 20:24:24 | 显示全部楼层
Book 2013rithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ("this algorithm never does too badly") than about u
发表于 2025-3-22 22:28:58 | 显示全部楼层
1947-4040 mit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ("this algorithm never does too badly") than about u978-3-031-01021-7978-3-031-02149-7Series ISSN 1947-4040 Series E-ISSN 1947-4059
发表于 2025-3-23 04:48:22 | 显示全部楼层
发表于 2025-3-23 09:26:31 | 显示全部楼层
Semi-Supervised Learning,chines [73] and most graph-based semi-supervised learning algorithms, assume that decision boundaries run through sparse regions. These algorithms obviously perform poorly on data generated by two heavily overlapping Gaussians, for example. See Figure 3.1 for a problem where the optimal decision boundary lies in a dense region.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 18:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表