找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semi-Riemannian Maps and Their Applications; Eduardo García-Río,Demir N. Kupeli Book 1999 Springer Science+Business Media Dordrecht 1999 R

[复制链接]
楼主: 休耕地
发表于 2025-3-23 11:16:00 | 显示全部楼层
Semi-Riemannian Transversal Maps,on the target manifold. If this semi-Riemannian foliation is taken to be the points of the target manifold, then the definition of a semi-Riemannian map with respect to such a foliation reduces to the definition of a semi-Riemannian map.
发表于 2025-3-23 17:13:29 | 显示全部楼层
Applications To Splitting Theorems, semi-Riemannian manifold (., .) yields a splitting of (., .) into a semi-Riemannian product manifold, provided that ∇ . is a complete vector field on (., .). We also know from Proposition 6.2.5 that being affine for a solution . of a semi-Riemannian eikonal equation is related to the Ricci curvatur
发表于 2025-3-23 19:49:02 | 显示全部楼层
发表于 2025-3-24 01:37:43 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/s/image/864807.jpg
发表于 2025-3-24 02:21:46 | 显示全部楼层
发表于 2025-3-24 06:46:55 | 显示全部楼层
Linear Algebra of Indefinite Inner Product Spaces,In this chapter we collect the mechanisms behind the linear algebra of real inner product spaces. Some of these were developed for certain classes of geometric objects in other literature, yet their proofs involve only the linear algebraic properties of the geometric objects at hand.
发表于 2025-3-24 12:05:38 | 显示全部楼层
发表于 2025-3-24 14:51:40 | 显示全部楼层
发表于 2025-3-24 21:00:46 | 显示全部楼层
Semi-Riemannian Transversal Maps,on the target manifold. If this semi-Riemannian foliation is taken to be the points of the target manifold, then the definition of a semi-Riemannian map with respect to such a foliation reduces to the definition of a semi-Riemannian map.
发表于 2025-3-25 01:09:13 | 显示全部楼层
Book 1999ian manifold to 1-dimensionalsemi- Euclidean space. In Chapter 7 some splitting theorems areobtained by using the existence of a semi-Riemannian map. ..Audience:. This volume will be of interest to mathematicians andphysicists whose work involves differential geometry, global analysis,or relativity and gravitation.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 18:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表