找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Second Order PDE‘s in Finite and Infinite Dimension; A Probabilistic Appr Sandra Cerrai Book 2001 Springer-Verlag Berlin Heidelberg 2001 Ko

[复制链接]
楼主: 分类
发表于 2025-3-23 12:52:27 | 显示全部楼层
Kolmogorov equations in Hilbert spaces,e diffusion operator corresponding to the system (4.0.1). In this chapter we want to study existence, uniqueness and optimal regularity in Holder spaces for the solutions of the parabolic and the elliptic problems associated with the operator ..
发表于 2025-3-23 17:30:46 | 显示全部楼层
发表于 2025-3-23 19:32:10 | 显示全部楼层
发表于 2025-3-24 01:03:39 | 显示全部楼层
https://doi.org/10.1007/b80743Kolmogorov equations; Parameter; diffusion process; ergodicity; partial differential equation; partial di
发表于 2025-3-24 02:48:45 | 显示全部楼层
0075-8434 unded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transition semigroups in the space of bounded and uniformly continuous functions. As an application of these resul
发表于 2025-3-24 10:27:46 | 显示全部楼层
发表于 2025-3-24 11:17:38 | 显示全部楼层
Introduction,e . = (. . .,... ,. .(.)) is a standard .-dimensional Brownian motion, the vector field . : ℝ. → ℝ. and the matrix valued function σ : ℝ. → ℒ(ℝ.) are smooth and have polynomial growth together with their derivatives and b enjoys some dissipativity conditions.
发表于 2025-3-24 15:41:51 | 显示全部楼层
Kolmogorov equations in , with unbounded coefficients,. . and the matrix .(.) = [. .(.)] is symmetric, strictly positive and of class . ., so that it can be written as . = ½σ.σ. ., .∈ℝ., for some function σ : ℝ. → ℒ(ℝ.) of class . . (in fact, we can take σ = √a). Both b and a are assumed to have polynomial growth and 6 enjoys some dissipativity conditi
发表于 2025-3-24 20:12:05 | 显示全部楼层
发表于 2025-3-25 01:14:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 09:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表