找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Schrödinger Operators The Quantum Mechanical Many-Body Problem; Proceedings of a Wor Erik Balslev Conference proceedings 1992 Springer-Verl

[复制链接]
楼主: 掩饰
发表于 2025-3-25 05:45:06 | 显示全部楼层
,Perturbations of Generalized Schrödinger Operators in Stochastic Spectral Analysis,groups, also called generalized Schrödinger operators. Upon introducing the Kato-Feller norm, the asymptotic behaviour of several spectral data can be studied. In the present article mainly the convergence of scattering matrices is considered.
发表于 2025-3-25 09:16:25 | 显示全部楼层
发表于 2025-3-25 12:50:30 | 显示全部楼层
,Spectral Theory of Schrödinger Operators with Very Long Range Potentials, function of class .. on .. {0} with . ≥ 2 that satisfies. We obtain at high energies the limiting absorption principle in the framework of Besov spaces, existence and uniqueness of the generalized eigenfunctions, and an eigenfunction expansion for ..
发表于 2025-3-25 15:49:05 | 显示全部楼层
发表于 2025-3-25 21:26:38 | 显示全部楼层
发表于 2025-3-26 02:29:01 | 显示全部楼层
Time-Delay in Short Range Potential Scattering,journ times of a scattering state and of the associated free state in a ‘fuzzy’ ball of radius . in .. The potential . is assumed to be smooth and behave like |.|.(. > 1) at infinity. For earlier studies on this problem, the reader is referred to [1]–[6]. Here we content ourselves with giving the re
发表于 2025-3-26 08:13:11 | 显示全部楼层
On smoothness of the N-body S-matrix,the 2-cluster—2-cluster and 2-cluster—.-cluster amplitudes under a short range condition on the potential and in addition under a discreteness assumption on the 2-cluster channel energies. This gives a rather complete picture for . = 3 while a number of interesting cases remain to be treated for . >
发表于 2025-3-26 10:18:22 | 显示全部楼层
发表于 2025-3-26 13:54:29 | 显示全部楼层
发表于 2025-3-26 19:20:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 20:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表