找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: SU(3) Symmetry in Atomic Nuclei; V. K. B. Kota Book 2020 Springer Nature Singapore Pte Ltd. 2020 Nuclear structure.Symmetries.SU(3).Deform

[复制链接]
查看: 22818|回复: 49
发表于 2025-3-21 18:46:03 | 显示全部楼层 |阅读模式
书目名称SU(3) Symmetry in Atomic Nuclei
编辑V. K. B. Kota
视频video
概述Discusses the technical aspects of SU(3) algebra in an easily understandable form.Describes a large number of nuclear models that admit SU(3).Highlights the importance of group theoretical models in n
图书封面Titlebook: SU(3) Symmetry in Atomic Nuclei;  V. K. B. Kota Book 2020 Springer Nature Singapore Pte Ltd. 2020 Nuclear structure.Symmetries.SU(3).Deform
描述.This book provides an understandable review of SU(3) representations, SU(3) Wigner–Racah algebra and the SU(3) ⊃ SO(3) integrity basis operators, which are often considered to be  difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting boson–fermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry..
出版日期Book 2020
关键词Nuclear structure; Symmetries; SU(3); Deformed nuclei; Wigner-Racah algebra
版次1
doihttps://doi.org/10.1007/978-981-15-3603-8
isbn_softcover978-981-15-3605-2
isbn_ebook978-981-15-3603-8
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

书目名称SU(3) Symmetry in Atomic Nuclei影响因子(影响力)




书目名称SU(3) Symmetry in Atomic Nuclei影响因子(影响力)学科排名




书目名称SU(3) Symmetry in Atomic Nuclei网络公开度




书目名称SU(3) Symmetry in Atomic Nuclei网络公开度学科排名




书目名称SU(3) Symmetry in Atomic Nuclei被引频次




书目名称SU(3) Symmetry in Atomic Nuclei被引频次学科排名




书目名称SU(3) Symmetry in Atomic Nuclei年度引用




书目名称SU(3) Symmetry in Atomic Nuclei年度引用学科排名




书目名称SU(3) Symmetry in Atomic Nuclei读者反馈




书目名称SU(3) Symmetry in Atomic Nuclei读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:05 | 显示全部楼层
(3) Algebra in Nuclei: Preliminaries,ary applications to shell model (SM) and interacting boson model (IBM). Although the physics of .(3) in nuclei is different from the one in particle physics, the algebraic results of .(3) apply to both. In emphasizing this, in the end presented are the quantum numbers for elementary particles using
发表于 2025-3-22 00:23:44 | 显示全部楼层
,(3) Wigner–Racah Algebra I,er .. Going beyond this, introduced and described in some detail are . and . reduced Wigner coefficients. Continuing this, introduced are also .(3) Racah or . coefficients and the closely related .-coefficients. Further details of .(3) Wigner-Racah algebra are given in the next two chapters.
发表于 2025-3-22 08:14:49 | 显示全部楼层
发表于 2025-3-22 10:44:09 | 显示全部楼层
Integrity Basis Operators,iaxial rotor and definition of operators in terms of . and . that give in an asymptotic limit the . and . quantum numbers. All these are employed in particular in the shell model related .(3) models for spectroscopy of deformed rare-earth and actinide nuclei.
发表于 2025-3-22 13:12:19 | 显示全部楼层
发表于 2025-3-22 21:08:29 | 显示全部楼层
发表于 2025-3-22 21:37:40 | 显示全部楼层
发表于 2025-3-23 01:32:57 | 显示全部楼层
发表于 2025-3-23 09:37:29 | 显示全部楼层
Statistical Nuclear Physics with ,(3),ome general aspects of trace propagation are described and trace propagation formulas for traces over .(3) irreps, in SM and IBM spaces, in four different situations are given with applications to test the goodness of .(3) symmetry in (2.1.) shell nuclei and also for understanding regularities gener
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 05:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表