找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robustness in Statistical Pattern Recognition; Yurij Kharin Book 1996 Springer Science+Business Media Dordrecht 1996 classification.cluste

[复制链接]
查看: 6408|回复: 37
发表于 2025-3-21 18:44:52 | 显示全部楼层 |阅读模式
书目名称Robustness in Statistical Pattern Recognition
编辑Yurij Kharin
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Robustness in Statistical Pattern Recognition;  Yurij Kharin Book 1996 Springer Science+Business Media Dordrecht 1996 classification.cluste
描述This book is concerned with important problems of robust (stable) statistical pat­ tern recognition when hypothetical model assumptions about experimental data are violated (disturbed). Pattern recognition theory is the field of applied mathematics in which prin­ ciples and methods are constructed for classification and identification of objects, phenomena, processes, situations, and signals, i. e. , of objects that can be specified by a finite set of features, or properties characterizing the objects (Mathematical Encyclopedia (1984)). Two stages in development of the mathematical theory of pattern recognition may be observed. At the first stage, until the middle of the 1970s, pattern recogni­ tion theory was replenished mainly from adjacent mathematical disciplines: mathe­ matical statistics, functional analysis, discrete mathematics, and information theory. This development stage is characterized by successful solution of pattern recognition problems of different physical nature, but of the simplest form in the sense of used mathematical models. One of the main approaches to solve pattern recognition problems is the statisti­ cal approach, which uses stochastic models of feature
出版日期Book 1996
关键词classification; cluster analysis; cognition; control; cybernetics; mathematics; modeling; pattern recogniti
版次1
doihttps://doi.org/10.1007/978-94-015-8630-6
isbn_softcover978-90-481-4760-1
isbn_ebook978-94-015-8630-6
copyrightSpringer Science+Business Media Dordrecht 1996
The information of publication is updating

书目名称Robustness in Statistical Pattern Recognition影响因子(影响力)




书目名称Robustness in Statistical Pattern Recognition影响因子(影响力)学科排名




书目名称Robustness in Statistical Pattern Recognition网络公开度




书目名称Robustness in Statistical Pattern Recognition网络公开度学科排名




书目名称Robustness in Statistical Pattern Recognition被引频次




书目名称Robustness in Statistical Pattern Recognition被引频次学科排名




书目名称Robustness in Statistical Pattern Recognition年度引用




书目名称Robustness in Statistical Pattern Recognition年度引用学科排名




书目名称Robustness in Statistical Pattern Recognition读者反馈




书目名称Robustness in Statistical Pattern Recognition读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:51:44 | 显示全部楼层
发表于 2025-3-22 02:10:16 | 显示全部楼层
https://doi.org/10.1007/978-94-015-8630-6classification; cluster analysis; cognition; control; cybernetics; mathematics; modeling; pattern recogniti
发表于 2025-3-22 07:49:11 | 显示全部楼层
Probability Models of Data and Optimal Decision Rules,lds, and random sets. Optimal (Bayesian) decision rules minimizing the classification risk are specified. These decision rules are defined in discrete and continuous spaces of feature variables. The computational formulae for risk are given.
发表于 2025-3-22 12:10:26 | 显示全部楼层
Robustness of Nonparametric Decision Rules and Small-sample Effects,nonparametric decision rules (Rosenblatt-Parzen, .-nearest neighbor) are used for classification. We find optimal values for smoothness parameters that optimize the robustness factor. We compare stability of parametric and nonparametric decision rules.
发表于 2025-3-22 14:43:42 | 显示全部楼层
Book 1996haracterized by successful solution of pattern recognition problems of different physical nature, but of the simplest form in the sense of used mathematical models. One of the main approaches to solve pattern recognition problems is the statisti­ cal approach, which uses stochastic models of feature
发表于 2025-3-22 19:08:00 | 显示全部楼层
stage is characterized by successful solution of pattern recognition problems of different physical nature, but of the simplest form in the sense of used mathematical models. One of the main approaches to solve pattern recognition problems is the statisti­ cal approach, which uses stochastic models of feature978-90-481-4760-1978-94-015-8630-6
发表于 2025-3-22 22:25:18 | 显示全部楼层
发表于 2025-3-23 02:07:33 | 显示全部楼层
发表于 2025-3-23 07:44:40 | 显示全部楼层
Yurij Kharinterdisziplinären Zugang charakterisiert, der eine Vielzahl human-, geistes-, kultur- und sozialwissenschaftlicher Perspektiven bündelt. Aktuelle, fundierte und von ausgewiesenen Fachleuten verfasste Beiträge geben einen Überblick über Themenfelder und Debatten der Menschenbildforschung und arbeiten
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 07:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表