找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robustness in Econometrics; Vladik Kreinovich,Songsak Sriboonchitta,Van-Nam Hu Book 2017 Springer International Publishing AG 2017 Computa

[复制链接]
楼主: Myelopathy
发表于 2025-3-30 11:27:01 | 显示全部楼层
How to Make Plausibility-Based Forecasting More Accurater whether a modified selection would like to a more accurate forecast. In this paper, we show that the uniform distribution does not always lead to (asymptotically) optimal estimates, and we show how to modify the uniform-distribution step so that the resulting estimates become asymptotically optimal.
发表于 2025-3-30 14:17:55 | 显示全部楼层
发表于 2025-3-30 19:29:11 | 显示全部楼层
EM Estimation for Multivariate Skew Slash Distributiondel based on this family are discussed. For illustration of the main results, we use the actual data coming from the Inner Mongolia Academy of Agriculture and Animal Husbandry Research Station to show the performance of the proposed algorithm.
发表于 2025-3-31 00:17:32 | 显示全部楼层
发表于 2025-3-31 03:15:56 | 显示全部楼层
发表于 2025-3-31 07:35:47 | 显示全部楼层
978-3-319-84480-0Springer International Publishing AG 2017
发表于 2025-3-31 09:47:06 | 显示全部楼层
Robustness in Econometrics978-3-319-50742-2Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-31 13:45:56 | 显示全部楼层
Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidencen application to two empirical data sets. Overall, ALS emerges as the winner: It achieves most or even all of the efficiency gains of WLS over OLS when WLS outperforms OLS, but it only has very limited downside risk compared to OLS when OLS outperforms WLS.
发表于 2025-3-31 18:31:31 | 显示全部楼层
发表于 2025-3-31 22:51:40 | 显示全部楼层
Sequential Monte Carlo Sampling for State Space ModelsThe aim of these notes is to revisit sequential Monte Carlo (SMC) sampling. SMC sampling is a powerful simulation tool for solving non-linear and/or non-Gaussian state space models. We illustrate this with several examples.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 14:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表