找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robust Statistics, Data Analysis, and Computer Intensive Methods; In Honor of Peter Hu Helmut Rieder Book 1996 Springer-Verlag New York, In

[复制链接]
楼主: Myelopathy
发表于 2025-3-28 16:16:47 | 显示全部楼层
Robust Regression with a Categorical Covariable,projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set.
发表于 2025-3-28 22:17:53 | 显示全部楼层
Robust Estimation in the Logistic Regression Model,hen the covariates follow a multivariate normal distribution. We illustrate the behavior of these estimates with two data sets. Finally, we mention some possible extensions of these M-estimates for a multinomial response.
发表于 2025-3-28 23:10:27 | 显示全部楼层
The m out of n Bootstrap and Goodness of Fit Tests with Double Censored Data,stribution of the test statistic. We show that if the . out of . bootstrap with . → ∞, . = o(.) is used to set the critical value of the test, the proposed testing procedure is asymptotically level ., has the correct asymptotic power function for . alternatives and is asymptotically consistent.
发表于 2025-3-29 03:22:06 | 显示全部楼层
发表于 2025-3-29 10:48:45 | 显示全部楼层
发表于 2025-3-29 13:44:44 | 显示全部楼层
发表于 2025-3-29 16:19:32 | 显示全部楼层
发表于 2025-3-29 21:54:38 | 显示全部楼层
,Bootstrap Variable—Selection and Confidence Sets, of the data. A naive use of the bootstrap in this problem produces risk estimators for candidate variable-selections that have a strong upward bias. Resampling from a less overfitted model removes the bias and leads to bootstrap variable-selections that minimize risk asymptotically. A related boots
发表于 2025-3-30 01:09:32 | 显示全部楼层
Robust Estimation in the Logistic Regression Model,and asymptotically normal. Their robustness is studied through the computation of asymptotic bias curves under point-mass contamination for the case when the covariates follow a multivariate normal distribution. We illustrate the behavior of these estimates with two data sets. Finally, we mention so
发表于 2025-3-30 04:20:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 14:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表