找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robust Recognition via Information Theoretic Learning; Ran He,Baogang Hu,Liang Wang Book 2014 The Author(s) 2014 Face recognition.informat

[复制链接]
楼主: Tamoxifen
发表于 2025-3-25 05:44:49 | 显示全部楼层
,, Regularized Correntropy,Sparse signal representation arises in application of compressed sensing and has been considered as a significant technique in computer vision and machine learning [27, 65, 154]. Based on the ..-.. equivalence theory [18, 39], the solution of an ..-minimization problem is equal to that of an .. minimization problem under certain conditions.
发表于 2025-3-25 10:47:27 | 显示全部楼层
Ran He,Baogang Hu,Liang WangIncludes supplementary material:
发表于 2025-3-25 13:21:41 | 显示全部楼层
Robust Recognition via Information Theoretic Learning978-3-319-07416-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-25 16:55:42 | 显示全部楼层
Introduction,ived from the statistical definition of a breakdown point [49, 106], is the ability of an algorithm that tolerates a large amount of outliers. Therefore, a robust method should be effective enough to reject outliers in images and perform classification only on uncorrupted pixels. In the past decades
发表于 2025-3-25 22:46:37 | 显示全部楼层
M-Estimators and Half-Quadratic Minimization,binations of order statistics), R-estimator (estimator based on rank transformation) [77], RM estimator (repeated median) [141], and LMS estimator (estimator using the least median of squares) [133]. When information theoretic learning is applied to robust statistics, the Gaussian kernel in entropy
发表于 2025-3-26 03:14:58 | 显示全部楼层
发表于 2025-3-26 07:31:10 | 显示全部楼层
发表于 2025-3-26 10:18:52 | 显示全部楼层
发表于 2025-3-26 13:16:01 | 显示全部楼层
发表于 2025-3-26 17:03:50 | 显示全部楼层
Correntropy and Linear Representation,samples are available. However, in practice, only a small number of samples are available for an object class. Hence linear representation methods are developed to generalize the representational capacity of available samples.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-16 16:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表