用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robust Data Mining; Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali

[复制链接]
查看: 30270|回复: 35
发表于 2025-3-21 19:43:06 | 显示全部楼层 |阅读模式
书目名称Robust Data Mining
编辑Petros Xanthopoulos,Panos M. Pardalos,Theodore B.
视频video
概述Summarizes the latest applications of robust optimization in data mining.An essential accompaniment for theoreticians and data miners.Includes supplementary material:
丛书名称SpringerBriefs in Optimization
图书封面Titlebook: Robust Data Mining;  Petros Xanthopoulos,Panos M. Pardalos,Theodore B.  Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali
描述.Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise..This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. .This brief will appeal to theoreticians and data miners working in this field..
出版日期Book 2013
关键词linear discriminant analysis; robust data mining; robust optimization; support vector machines
版次1
doihttps://doi.org/10.1007/978-1-4419-9878-1
isbn_softcover978-1-4419-9877-4
isbn_ebook978-1-4419-9878-1Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightPetros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafalis 2013
The information of publication is updating

书目名称Robust Data Mining影响因子(影响力)




书目名称Robust Data Mining影响因子(影响力)学科排名




书目名称Robust Data Mining网络公开度




书目名称Robust Data Mining网络公开度学科排名




书目名称Robust Data Mining被引频次




书目名称Robust Data Mining被引频次学科排名




书目名称Robust Data Mining年度引用




书目名称Robust Data Mining年度引用学科排名




书目名称Robust Data Mining读者反馈




书目名称Robust Data Mining读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:25:45 | 显示全部楼层
Introduction,or among all these is their ability to extract useful patterns and associations from data usually stored in large databases. Thus DM techniques aim to provide knowledge and interesting interpretation of, usually, vast amounts of data. This task is crucial, especially today, mainly because of the eme
发表于 2025-3-22 01:25:09 | 显示全部楼层
Principal Component Analysis,ds and simple patterns in a group of samples. It has application in several areas of engineering. It is popular from computational perspective as it requires only an eigendecomposition or singular value decomposition. There are two alternative optimization approaches for obtaining principal componen
发表于 2025-3-22 05:10:49 | 显示全部楼层
Linear Discriminant Analysis,s (LDA) was proposed by R. Fischer in 1936. It consists in finding the projection hyperplane that minimizes the interclass variance and maximizes the distance between the projected means of the classes. Similarly to PCA, these two objectives can be solved by solving an eigenvalue problem with the co
发表于 2025-3-22 11:40:12 | 显示全部楼层
Support Vector Machines,eptually simplest algorithms whereas at the same time one of the best especially for binary classification. Here we illustrate the mathematical formulation of SVM together with its robust equivalent for the most common uncertainty sets.
发表于 2025-3-22 14:47:48 | 显示全部楼层
发表于 2025-3-22 17:52:59 | 显示全部楼层
发表于 2025-3-22 21:27:29 | 显示全部楼层
Principal Component Analysis,d up providing the same solution. It is necessary to study and understand both of these alternative approaches. In the second part of this chapter we present the robust counterpart formulation of PCA and demonstrate how such a formulation can be used in practice in order to produce sparse solutions.
发表于 2025-3-23 02:38:06 | 显示全部楼层
发表于 2025-3-23 08:44:52 | 显示全部楼层
Conclusion, binary rule of the type “if feature . is more than .. and feature . less than .. then the sample belongs to class ..” There has been significant amount of research in the area of prior knowledge classification [33, 49] but there has not been a significant study of robust optimization on this direction.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 23:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表