找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: RoboCup 2018: Robot World Cup XXII; Dirk Holz,Katie Genter,Oskar von Stryk Conference proceedings 2019 Springer Nature Switzerland AG 2019

[复制链接]
查看: 52144|回复: 56
发表于 2025-3-21 16:19:26 | 显示全部楼层 |阅读模式
书目名称RoboCup 2018: Robot World Cup XXII
编辑Dirk Holz,Katie Genter,Oskar von Stryk
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: RoboCup 2018: Robot World Cup XXII;  Dirk Holz,Katie Genter,Oskar von Stryk Conference proceedings 2019 Springer Nature Switzerland AG 2019
描述.This book includes the post-conference proceedings of the 22nd RoboCup International Symposium, held in Montreal, QC, Canada, in June 2018. .The 32 full revised papers and 11 papers from the winning teams presented were carefully reviewed and selected from 51 submissions. .This book highlights the approaches of champion teams from the competitions and documents the proceedings of the 22nd annual RoboCup International Symposium. Due to the complex research challenges set by the RoboCup initiative, the RoboCup International Symposium offers a unique perspective for exploring scientific and engineering principles underlying advanced robotic and AI systems..
出版日期Conference proceedings 2019
关键词agents; artificial intelligence; competition; computer vision; hardware; Human-Computer Interaction (HCI)
版次1
doihttps://doi.org/10.1007/978-3-030-27544-0
isbn_softcover978-3-030-27543-3
isbn_ebook978-3-030-27544-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称RoboCup 2018: Robot World Cup XXII影响因子(影响力)




书目名称RoboCup 2018: Robot World Cup XXII影响因子(影响力)学科排名




书目名称RoboCup 2018: Robot World Cup XXII网络公开度




书目名称RoboCup 2018: Robot World Cup XXII网络公开度学科排名




书目名称RoboCup 2018: Robot World Cup XXII被引频次




书目名称RoboCup 2018: Robot World Cup XXII被引频次学科排名




书目名称RoboCup 2018: Robot World Cup XXII年度引用




书目名称RoboCup 2018: Robot World Cup XXII年度引用学科排名




书目名称RoboCup 2018: Robot World Cup XXII读者反馈




书目名称RoboCup 2018: Robot World Cup XXII读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:53:20 | 显示全部楼层
Multi-Robot Fast-Paced Coordination with Leader Electioncan efficiently achieve their pre-defined global objective. From a wide range of multi-agent coordination sub-topics, one of the current open issues is task assignment and role selection in fast-paced environments. In homogeneous teams, where robots have the ability to dynamically change roles, work
发表于 2025-3-22 04:22:54 | 显示全部楼层
发表于 2025-3-22 04:35:20 | 显示全部楼层
Visual Mesh: Real-Time Object Detection Using Constant Sample Densityansformation called Visual Mesh. It uses object geometry to create a graph in vision space, reducing computational complexity by normalizing the pixel and feature density of objects. The experiments compare the Visual Mesh with several other fast convolutional neural networks. The results demonstrat
发表于 2025-3-22 09:19:54 | 显示全部楼层
发表于 2025-3-22 16:48:25 | 显示全部楼层
发表于 2025-3-22 18:52:12 | 显示全部楼层
Learning Skills for Small Size League RoboCuphitecture. STP divides the robot behavior into a hand-coded hierarchy of plays, which coordinate multiple robots, tactics, which encode high level behavior of individual robots, and skills, which encode low-level control of pieces of a tactic. The CMDragons successfully used an STP architecture to w
发表于 2025-3-23 00:43:45 | 显示全部楼层
Real-Time Scene Understanding Using Deep Neural Networks for RoboCup SPL platforms is challenging because of CNNs’ excessive computational requirements. We present an end-to-end neural network solution to scene understanding for robot soccer. We compose two key neural networks: one to perform semantic segmentation on an image, and another to propagate class labels betwe
发表于 2025-3-23 05:04:27 | 显示全部楼层
Training a RoboCup Striker Agent via Transferred Reinforcement Learningtion spaces with continuous parameters. Advancements such as the Deep-Q Network and the Deep Deterministic Policy Gradient were a critical step in making reinforcement learning a feasible option for training agents in real world scenarios. The viability of these technologies has previously been demo
发表于 2025-3-23 09:26:48 | 显示全部楼层
Playing Soccer Without Colors in the SPL: A Convolutional Neural Network Approachstem are: (i) real-time operation in the NAO robot, and (ii) the ability to detect the ball, the robots, their orientations, the lines and key field features robustly. Our ball detector, robot detector, and robot’s orientation detector obtain the highest reported detection rates. The proposed vision
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 04:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表