找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Rings Close to Regular; Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb

[复制链接]
查看: 6185|回复: 38
发表于 2025-3-21 19:23:03 | 显示全部楼层 |阅读模式
书目名称Rings Close to Regular
编辑Askar Tuganbaev
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Rings Close to Regular;  Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb
描述Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l‘ then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
出版日期Book 2002
关键词DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
版次1
doihttps://doi.org/10.1007/978-94-015-9878-1
isbn_softcover978-90-481-6116-4
isbn_ebook978-94-015-9878-1
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

书目名称Rings Close to Regular影响因子(影响力)




书目名称Rings Close to Regular影响因子(影响力)学科排名




书目名称Rings Close to Regular网络公开度




书目名称Rings Close to Regular网络公开度学科排名




书目名称Rings Close to Regular被引频次




书目名称Rings Close to Regular被引频次学科排名




书目名称Rings Close to Regular年度引用




书目名称Rings Close to Regular年度引用学科排名




书目名称Rings Close to Regular读者反馈




书目名称Rings Close to Regular读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:19:26 | 显示全部楼层
发表于 2025-3-22 02:13:31 | 显示全部楼层
Regular and Strongly Regular Rings,A module . is said to be . if every cyclic submodule of . is a direct summand of ..
发表于 2025-3-22 05:30:33 | 显示全部楼层
发表于 2025-3-22 11:23:31 | 显示全部楼层
Semiregular and Weakly Regular Rings,For a module ., we say that a submodule . of . of . if there is a direct decomposition . such that . and .⋂. is a superfluous submodule of .. In this case, .⋂. is a superfluous submodule of . and .⋂.⊆.
发表于 2025-3-22 16:26:11 | 显示全部楼层
发表于 2025-3-22 19:40:05 | 显示全部楼层
Exchange Rings and Modules,Let . be a cardinal number. A module . is called a . (see [123]) if for every module . and each direct decomposition .... such that . and card., there are submodules ..′... with ....′. (It follows from the modular law that ..′ must be a direct summand of .. for all ..)
发表于 2025-3-22 23:53:35 | 显示全部楼层
发表于 2025-3-23 02:04:22 | 显示全部楼层
发表于 2025-3-23 05:53:05 | 显示全部楼层
https://doi.org/10.1007/978-94-015-9878-1DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 05:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表