找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Rigorous Time Slicing Approach to Feynman Path Integrals; Daisuke Fujiwara Book 2017 Springer Japan KK 2017 Feynman path integral.Feynman

[复制链接]
查看: 22574|回复: 46
发表于 2025-3-21 18:19:33 | 显示全部楼层 |阅读模式
书目名称Rigorous Time Slicing Approach to Feynman Path Integrals
编辑Daisuke Fujiwara
视频video
概述Assumes the potential is such that it is smooth and its derivatives of order equal to or higher than two are bounded.Establishes the proof by the time slicing method, the method Feynman himself used,
丛书名称Mathematical Physics Studies
图书封面Titlebook: Rigorous Time Slicing Approach to Feynman Path Integrals;  Daisuke Fujiwara Book 2017 Springer Japan KK 2017 Feynman path integral.Feynman
描述This book proves that Feynman‘s original definition of the path integral actually converges to the fundamental solution of the Schrödinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved..The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schrödinger‘s quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schrödinger‘s method, there is still much to be done concerning rigorous mathematical treatment of Feynman‘s method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by dividing the time interval into small pieces. This method is called the time slicing approximation method or the time slicing method..This book consists of two parts. Part I is t
出版日期Book 2017
关键词Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio
版次1
doihttps://doi.org/10.1007/978-4-431-56553-6
isbn_softcover978-4-431-56818-6
isbn_ebook978-4-431-56553-6Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer Japan KK 2017
The information of publication is updating

书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)学科排名




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度学科排名




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次学科排名




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用学科排名




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈




书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:45:43 | 显示全部楼层
https://doi.org/10.1007/978-4-431-56553-6Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio
发表于 2025-3-22 04:19:31 | 显示全部楼层
978-4-431-56818-6Springer Japan KK 2017
发表于 2025-3-22 05:03:09 | 显示全部楼层
发表于 2025-3-22 09:13:14 | 显示全部楼层
Stationary Phase Method for Oscillatory Integrals over a Space of Large Dimensionm is given, which is independent of the dimension. This theorem enables us to discuss the time slicing approximation of Feynman path integrals when the dimension of the space goes to .. This was the central tool of our discussions in Sect. 5.4 of Chap. ..
发表于 2025-3-22 14:19:58 | 显示全部楼层
Feynman’s IdeaBefore going to mathematical discussions, we rapidly explain, for convenience of readers, the notion of Feynman path integrals following Feynman without mathematical rigor. Afterward, some examples are given.
发表于 2025-3-22 18:27:43 | 显示全部楼层
发表于 2025-3-22 23:55:50 | 显示全部楼层
发表于 2025-3-23 02:22:32 | 显示全部楼层
发表于 2025-3-23 05:34:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 09:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表