找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Rigid Analytic Geometry and Its Applications; Jean Fresnel,Marius Put Textbook 2004 Springer Science+Business Media New York 2004 Area.Mer

[复制链接]
楼主: irritants
发表于 2025-3-23 11:16:26 | 显示全部楼层
Affinoid Algebras,he set of maximal ideals of some finitely generated algebra over .. Rigid (analytic) spaces over a complete non-archimedean valued field . are formed in a similar way. A rigid space is obtained by glueing affinoid spaces with respect to a certain Grothendieck topology which we will call a .-topology
发表于 2025-3-23 16:56:49 | 显示全部楼层
发表于 2025-3-23 20:48:14 | 显示全部楼层
Abelian Varieties,n analytic torus . over a non-archimedean valued field . is introduced. The analytic structure of the analytification . of an algebraic torus . over ., with character group ., is investigated, as well as lattices Λ ⊂ . and the structure of the analytic torus .. For analytic line bundles on ., here r
发表于 2025-3-23 23:21:39 | 显示全部楼层
Points of Rigid Spaces, Rigid Cohomology,icular, there are abelian sheaves . on . such that the stalk . is 0 for every . ∈ .. The obvious reason is that the Grothendieck topology on . is not local enough. The first concept of a sufficient collection of points for a rigid space is presented in [198]. This concept, its generalizations and ri
发表于 2025-3-24 03:23:52 | 显示全部楼层
Etale Cohomology of Rigid Spaces,ell known for real and complex varieties. Especially for algebraic varieties over a field of positive characteristic, this theory produces surprising analogies with the algebraic topology of real or complex varieties. One of the early successes is of course the proof of the Weil conjectures. For rig
发表于 2025-3-24 07:21:26 | 显示全部楼层
发表于 2025-3-24 11:08:36 | 显示全部楼层
发表于 2025-3-24 18:41:24 | 显示全部楼层
发表于 2025-3-24 19:59:08 | 显示全部楼层
发表于 2025-3-25 00:19:31 | 显示全部楼层
Abelian Varieties,he uniformization of general abelian varieties over . is sketched. The results, presented in this chapter, are the work of many authors, A. Grothendieck, M. Raynaud, D. Mumford, L. Gerritzen, Y. Manin, V. Drinfeld, S. Bosch, W. Lütkebohmert et al.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 06:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表