找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Optimization and Its Applications; Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan

[复制链接]
查看: 22881|回复: 37
发表于 2025-3-21 19:21:00 | 显示全部楼层 |阅读模式
书目名称Riemannian Optimization and Its Applications
编辑Hiroyuki Sato
视频video
概述Details the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
丛书名称SpringerBriefs in Electrical and Computer Engineering
图书封面Titlebook: Riemannian Optimization and Its Applications;  Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan
描述.This brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to problems in other fields..To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail. A brief review of recent developments in Riemannian optimization is also provided. .  . Riemannian optimization methods are applicable to many problems in various fields. This brief discusses some important applications including the eigenvalue and singular value decompositions in numericallinear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics..
出版日期Book 2021
关键词Riemannian Optimization; Optimization on Manifolds; Conjugate Gradient Method; Singular Value Decomposi
版次1
doihttps://doi.org/10.1007/978-3-030-62391-3
isbn_softcover978-3-030-62389-0
isbn_ebook978-3-030-62391-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

书目名称Riemannian Optimization and Its Applications影响因子(影响力)




书目名称Riemannian Optimization and Its Applications影响因子(影响力)学科排名




书目名称Riemannian Optimization and Its Applications网络公开度




书目名称Riemannian Optimization and Its Applications网络公开度学科排名




书目名称Riemannian Optimization and Its Applications被引频次




书目名称Riemannian Optimization and Its Applications被引频次学科排名




书目名称Riemannian Optimization and Its Applications年度引用




书目名称Riemannian Optimization and Its Applications年度引用学科排名




书目名称Riemannian Optimization and Its Applications读者反馈




书目名称Riemannian Optimization and Its Applications读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:08:56 | 显示全部楼层
Conjugate Gradient Methods on Riemannian Manifolds,red to be a modified version of the Riemannian steepest descent method. In particular, we analyze the Fletcher–Reeves-type and Dai–Yuan-type Riemannian CG methods and prove their global convergence properties under some conditions.
发表于 2025-3-22 04:11:45 | 显示全部楼层
发表于 2025-3-22 05:36:36 | 显示全部楼层
发表于 2025-3-22 08:50:24 | 显示全部楼层
发表于 2025-3-22 16:03:25 | 显示全部楼层
Recent Developments in Riemannian Optimization,In this chapter, we review the recent developments in Riemannian optimization, such as stochastic and constrained optimization. A few other topics, including second-order and nonsmooth optimization, are also briefly reviewed. Interested readers may refer to the references introduced in the subsequent sections.
发表于 2025-3-22 19:25:25 | 显示全部楼层
Hiroyuki SatoDetails the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
发表于 2025-3-23 00:26:14 | 显示全部楼层
发表于 2025-3-23 05:00:20 | 显示全部楼层
发表于 2025-3-23 07:33:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 14:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表