找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 19871st edition Springer-Verlag Berlin Heidelberg 1987 Ri

[复制链接]
查看: 35264|回复: 35
发表于 2025-3-21 17:53:35 | 显示全部楼层 |阅读模式
书目名称Riemannian Geometry
编辑Sylvestre Gallot,Dominique Hulin,Jacques Lafontain
视频video
丛书名称Universitext
图书封面Titlebook: Riemannian Geometry;  Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 19871st edition Springer-Verlag Berlin Heidelberg 1987 Ri
描述Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP‘S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop‘s inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop‘s inequality and
出版日期Textbook 19871st edition
关键词Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; relativity
版次1
doihttps://doi.org/10.1007/978-3-642-97026-9
isbn_ebook978-3-642-97026-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

书目名称Riemannian Geometry影响因子(影响力)




书目名称Riemannian Geometry影响因子(影响力)学科排名




书目名称Riemannian Geometry网络公开度




书目名称Riemannian Geometry网络公开度学科排名




书目名称Riemannian Geometry被引频次




书目名称Riemannian Geometry被引频次学科排名




书目名称Riemannian Geometry年度引用




书目名称Riemannian Geometry年度引用学科排名




书目名称Riemannian Geometry读者反馈




书目名称Riemannian Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:16:11 | 显示全部楼层
发表于 2025-3-22 03:12:01 | 显示全部楼层
Curvature,e . is a vector field such that . = .. We already met in 2.64 the second covariant derivative of a function, which is a symmetric 2-tensor. This property is no more true for the second derivative of a tensor. However, . only depends on ..
发表于 2025-3-22 08:09:01 | 显示全部楼层
Analysis on Manifolds and the Ricci Curvature,ignore mathematical beings which locally behave like domains on ., just as manifolds locally behave like .. On the other hand, when doing Analysis on manifolds, it may useful to cut them into small pieces (cf. for example 4.65 and 4.68 below). These pieces are no more manifolds, but they will be man
发表于 2025-3-22 09:14:19 | 显示全部楼层
Universitexthttp://image.papertrans.cn/r/image/830307.jpg
发表于 2025-3-22 13:42:14 | 显示全部楼层
发表于 2025-3-22 18:24:45 | 显示全部楼层
Springer-Verlag Berlin Heidelberg 1987
发表于 2025-3-22 23:27:50 | 显示全部楼层
发表于 2025-3-23 02:52:43 | 显示全部楼层
Differential Manifolds,A subset . ⊂ . is an . . . if, for any χ ∈ ., there exists a neighborhood . of χ in . and a . submersion .: . → . such that . ⊓ . = . (0) (we recall tnat . is a submersion if its differential map is surjective at each point).
发表于 2025-3-23 09:04:13 | 显示全部楼层
Riemannian Metrics,A Riemannian metric on a manifold M is a family of scalar products defined on each tangent space . and depending smoothly on .:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-11 07:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表