书目名称 | Riemannian Geometry |
编辑 | Sylvestre Gallot,Dominique Hulin,Jacques Lafontain |
视频video | |
丛书名称 | Universitext |
图书封面 |  |
描述 | Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP‘S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop‘s inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop‘s inequality and |
出版日期 | Textbook 19871st edition |
关键词 | Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; relativity |
版次 | 1 |
doi | https://doi.org/10.1007/978-3-642-97026-9 |
isbn_ebook | 978-3-642-97026-9Series ISSN 0172-5939 Series E-ISSN 2191-6675 |
issn_series | 0172-5939 |
copyright | Springer-Verlag Berlin Heidelberg 1987 |