找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Geometry; Peter Petersen Textbook 2016Latest edition Springer International Publishing AG 2016 Riemannian geometry textbook ado

[复制链接]
楼主: Enclosure
发表于 2025-3-23 10:33:16 | 显示全部楼层
发表于 2025-3-23 15:02:19 | 显示全部楼层
Curvature, the realm of geometry. The most elementary way of defining curvature is to set it up as an integrability condition. This indicates that when it vanishes it should be possible to solve certain differential equations, e.g., that the metric is Euclidean. This was in fact one of Riemann’s key insights.
发表于 2025-3-23 18:19:35 | 显示全部楼层
发表于 2025-3-23 23:15:28 | 显示全部楼层
Killing Fields, subsequent section to prove Bochner’s theorems about the lack of Killing fields on manifolds with negative Ricci curvature. In the last section we present several results about how Killing fields influence the topology of manifolds with positive sectional curvature. This is a somewhat more recent line of inquiry.
发表于 2025-3-24 02:30:16 | 显示全部楼层
发表于 2025-3-24 07:19:02 | 显示全部楼层
Derivatives,This chapter introduces several important notions of derivatives of tensors. In chapters 5 and 6 we also introduce partial derivatives of functions into Riemannian manifolds.
发表于 2025-3-24 14:25:25 | 显示全部楼层
Convergence,In this chapter we offer an introduction to several of the convergence ideas for Riemannian manifolds.
发表于 2025-3-24 17:00:25 | 显示全部楼层
发表于 2025-3-24 19:40:15 | 显示全部楼层
Peter PetersenIncludes a substantial addition of unique and enriching exercises.Exists as one of the few Works to combine both the geometric parts of Riemannian geometry and analytic aspects of the theory.Presents
发表于 2025-3-25 02:51:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 20:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表