找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ricci Flow and Geometric Applications; Cetraro, Italy 2010 Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be Book 2016 Springer Internati

[复制链接]
查看: 42126|回复: 35
发表于 2025-3-21 17:03:42 | 显示全部楼层 |阅读模式
书目名称Ricci Flow and Geometric Applications
副标题Cetraro, Italy 2010
编辑Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be
视频video
概述Offers a basic introduction to the subjects.Gives detailed and careful explanations of the topics.Presents four different and very important aspects of the applications of Ricci flow.Includes suppleme
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Ricci Flow and Geometric Applications; Cetraro, Italy  2010 Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be Book 2016 Springer Internati
描述.Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. ..The book’s four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kähler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds..
出版日期Book 2016
关键词53C44, 57M50, 57M40; Ricci flow; Manifolds; Geometrization; Poincare‘ conjecture; Ricci tensor; Kahler-Ric
版次1
doihttps://doi.org/10.1007/978-3-319-42351-7
isbn_softcover978-3-319-42350-0
isbn_ebook978-3-319-42351-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Ricci Flow and Geometric Applications影响因子(影响力)




书目名称Ricci Flow and Geometric Applications影响因子(影响力)学科排名




书目名称Ricci Flow and Geometric Applications网络公开度




书目名称Ricci Flow and Geometric Applications网络公开度学科排名




书目名称Ricci Flow and Geometric Applications被引频次




书目名称Ricci Flow and Geometric Applications被引频次学科排名




书目名称Ricci Flow and Geometric Applications年度引用




书目名称Ricci Flow and Geometric Applications年度引用学科排名




书目名称Ricci Flow and Geometric Applications读者反馈




书目名称Ricci Flow and Geometric Applications读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:45 | 显示全部楼层
发表于 2025-3-22 01:47:44 | 显示全部楼层
The Differentiable Sphere Theorem (After S. Brendle and R. Schoen),chnique developed by C. Böhm and B. Wilking who obtained the same conclusion assuming that the manifold has positive curvature operator. The maximum principle applied to the Ricci flow equation leads to studying an ordinary differential equation on the space of curvature operators.
发表于 2025-3-22 08:09:40 | 显示全部楼层
Thick/Thin Decomposition of Three-Manifolds and the Geometrisation Conjecture,etrisation conjecture. The material is largely based on the monographs (Bessière et al., EMS Tracts Math 13, 2010) and (Boileau et al., Monographie, Panorama et Synthèse 15:167 pp, 2003). The author wants to thank the organizers of the CIME Summer School in Cetraro 2010 for their patience whilst these notes were completed.
发表于 2025-3-22 11:27:32 | 显示全部楼层
Singularities of Three-Dimensional Ricci Flows,of of the differentiable sphere theorem. In these notes we provide an introduction to the Ricci flow, by giving a survey of the basic results and examples. In particular, we focus our attention on the analysis of the singularities of the flow in the three-dimensional case which is needed in the surgery construction by Hamilton and Perelman.
发表于 2025-3-22 14:31:08 | 显示全部楼层
Book 2016here theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kähler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds..
发表于 2025-3-22 20:55:49 | 显示全部楼层
发表于 2025-3-22 23:31:50 | 显示全部楼层
Thick/Thin Decomposition of Three-Manifolds and the Geometrisation Conjecture,ere, but mainly to emphasize geometric properties of 3-manifolds and to illustrate some basic ideas or methods underlying Perelman’s proof of the geometrisation conjecture. The material is largely based on the monographs (Bessière et al., EMS Tracts Math 13, 2010) and (Boileau et al., Monographie, P
发表于 2025-3-23 03:08:15 | 显示全部楼层
发表于 2025-3-23 08:30:04 | 显示全部楼层
artengeschäfts eine signifikant höhere Komplexität aufweist. Dies wiederum und die Tatsache fehlender Liberalisierungen sowie Harmonisierungen birgt erhebliche Ineffizienzen entlang der Wertschöpfungskette des Kartengeschäfts, die sich sowohl in den Prozessen des kartenbasierten Zahlungsverkehrs als
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 08:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表