找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin Vîlcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[复制链接]
楼主: FAULT
发表于 2025-3-27 01:02:32 | 显示全部楼层
发表于 2025-3-27 04:13:55 | 显示全部楼层
978-3-031-47513-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-27 08:12:18 | 显示全部楼层
发表于 2025-3-27 11:48:49 | 显示全部楼层
Domes and Pyramids tailoring. A key step (Lemma .) repeatedly slices off shapes we call g-domes. Each g-dome slice can itself be achieved by slicing off pyramids, i.e., by suitable vertex truncations. Lemma . will show that slicing off a pyramid can be achieved by tailoring, and thus leading to Theorem ..
发表于 2025-3-27 13:49:23 | 显示全部楼层
Pyramid Seal Graph skipped and visited later. The chapter explores a topic that emerged from our approach of tailoring via sculpting: roughly, the distribution of “traces” or “scars” left on the resulting polyhedron . by the digon-tailoring process. We called them “seals” in the previous chapter. The . is the graph on . formed by all seals.
发表于 2025-3-27 18:51:06 | 显示全部楼层
Tailoring via Flattenings slightly weaker than tailoring via sculpting, either with digons (Theorem .) or with crests (Theorem .), weaker in the sense that the resulting scaled copy of . could be arbitrarily small. Nevertheless, the proof and algorithm have the advantage of operating entirely intrinsically: the 3D structure of . and . is never invoked.
发表于 2025-3-28 00:32:01 | 显示全部楼层
发表于 2025-3-28 04:15:15 | 显示全部楼层
Vertices on Quasigeodesicsx polyhedron . has a quasigeodesic . containing at most one vertex, then the vertex-merging described in that theorem leads to an unfolding of . to a cylinder . and then to a non-overlapping unfolding, an anycut-net for ..
发表于 2025-3-28 09:04:03 | 显示全部楼层
发表于 2025-3-28 11:45:17 | 显示全部楼层
alls durchschnittlich minderbegabt sich zeigten. Und zwar betrug die Abweichung im Durchschnitt etwa ein Drittel von der der Eltern. Zwischen den. Durchschnittsnoten der Großeltern und Enkel zeigte sich eine Übereinstimmung von nur wenig geringerer Größe.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 12:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表