用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representations of SU(2,1) in Fourier Term Modules; Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th

[复制链接]
查看: 24447|回复: 36
发表于 2025-3-21 18:25:41 | 显示全部楼层 |阅读模式
书目名称Representations of SU(2,1) in Fourier Term Modules
编辑Roelof W. Bruggeman,Roberto J. Miatello
视频video
概述Describes the structure of Fourier term modules.Gives complete Fourier-Jacobi expansions for SU(2,1).Provides computations in the Mathematica notebook
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Representations of SU(2,1) in Fourier Term Modules;  Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th
描述This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included..These results can be  applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms..Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed..
出版日期Book 2023
关键词Fourier Tem Modules; SU(2,1); Automorphic Form; Fourier-Jacobi Series; Unitary Group SU(2,1),; Non-Abelia
版次1
doihttps://doi.org/10.1007/978-3-031-43192-0
isbn_softcover978-3-031-43191-3
isbn_ebook978-3-031-43192-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Representations of SU(2,1) in Fourier Term Modules影响因子(影响力)




书目名称Representations of SU(2,1) in Fourier Term Modules影响因子(影响力)学科排名




书目名称Representations of SU(2,1) in Fourier Term Modules网络公开度




书目名称Representations of SU(2,1) in Fourier Term Modules网络公开度学科排名




书目名称Representations of SU(2,1) in Fourier Term Modules被引频次




书目名称Representations of SU(2,1) in Fourier Term Modules被引频次学科排名




书目名称Representations of SU(2,1) in Fourier Term Modules年度引用




书目名称Representations of SU(2,1) in Fourier Term Modules年度引用学科排名




书目名称Representations of SU(2,1) in Fourier Term Modules读者反馈




书目名称Representations of SU(2,1) in Fourier Term Modules读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:54:03 | 显示全部楼层
Representations of SU(2,1) in Fourier Term Modules
发表于 2025-3-22 02:01:25 | 显示全部楼层
发表于 2025-3-22 04:35:28 | 显示全部楼层
978-3-031-43191-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 10:21:35 | 显示全部楼层
发表于 2025-3-22 15:09:27 | 显示全部楼层
发表于 2025-3-22 18:08:20 | 显示全部楼层
发表于 2025-3-22 21:37:24 | 显示全部楼层
Roelof W. Bruggeman,Roberto J. MiatelloDescribes the structure of Fourier term modules.Gives complete Fourier-Jacobi expansions for SU(2,1).Provides computations in the Mathematica notebook
发表于 2025-3-23 01:29:25 | 显示全部楼层
Introduction,book. We summarize the main results on Fourier term modules in four theorems. We give an overview of applications to automorphic forms, considering also automorphic forms with moderate exponential growth.
发表于 2025-3-23 09:03:01 | 显示全部楼层
The Lie Group SU(2,1) and Subgroups,aratory chapter, we fix a standard realization . of ., and consider the representation theory of the maximal unipotent subgroup . and of the maximal compact subgroup . in an Iwasawa decomposition .. We need to understand the realizations of irreducible representations of . and of . in spaces of functions on . and ., respectively.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-10 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表