找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representations of SL2(Fq); Cédric Bonnafé Textbook 2011 Springer-Verlag London Limited 2011 Deligne-Lusztig theory.Morita equivalences.SL

[复制链接]
楼主: irritants
发表于 2025-3-23 11:49:52 | 显示全部楼层
Unequal Characteristic: Equivalences of Categories abelian defect group), the equivalences of categories predicted by Broué’s conjecture are always Morita equivalences (see Sections 8.1 and 8.2). While it is possible to obtain this result using Brauer trees and Brauer’s theorem B.4.2, we give instead a concrete construction of these equivalences us
发表于 2025-3-23 15:08:13 | 显示全部楼层
发表于 2025-3-23 18:05:57 | 显示全部楼层
Equal Characteristic to the construction of the simple .-modules. This classical construction generalises to the case of finite reductive groups. It turns out that the simple .-modules are the restrictions of simple “rational representations” of the algebraic group .. Having obtained this description the determination
发表于 2025-3-24 00:14:24 | 显示全部楼层
发表于 2025-3-24 05:36:11 | 显示全部楼层
Structure of ,The purpose of this chapter is to study the structure of the group .: noteworthy subgroups (tori, Borel subgroups, the Bruhat decomposition), distinguished subgroups, conjugacy classes, Sylow subgroups and their normalisers.
发表于 2025-3-24 10:31:44 | 显示全部楼层
The Geometry of the Drinfeld CurveThe purpose of this chapter is to assemble the geometric properties of . and of the action of .×(..⋊〈.〉.) which allows us to calculate its .-adic cohomology (as a module for the monoid .×(..⋊〈.〉.)). A large part of this chapter is dedicated to the construction of quotients of . by the actions of the finite groups ., . and ...
发表于 2025-3-24 12:09:50 | 显示全部楼层
Harish-Chandra InductionIn this chapter we study Harish-Chandra induction, which associates to a .-module the .-module obtained by first extending the .-module to a .-module (letting . act trivially) and then inducing to .. This construction allows us to obtain roughly half of the irreducible characters of ..
发表于 2025-3-24 17:47:01 | 显示全部楼层
Special CasesIn this chapter we will make explicit certain exotic properties of the groups . when .=3, 5 or 7. These include exceptional isomorphisms, inclusions as subgroups of ., and realisations as subgroups of reflection groups. For a recollection of definitions, results about reflection groups, see the Appendix C.
发表于 2025-3-24 23:04:55 | 显示全部楼层
发表于 2025-3-25 01:48:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 03:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表