找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation of Lie Groups and Special Functions; Volume 2: Class I Re N. Ja. Vilenkin,A. U. Klimyk Book 1993 Springer Science+Business M

[复制链接]
查看: 28444|回复: 35
发表于 2025-3-21 17:15:19 | 显示全部楼层 |阅读模式
书目名称Representation of Lie Groups and Special Functions
副标题Volume 2: Class I Re
编辑N. Ja. Vilenkin,A. U. Klimyk
视频video
丛书名称Mathematics and its Applications
图书封面Titlebook: Representation of Lie Groups and Special Functions; Volume 2: Class I Re N. Ja. Vilenkin,A. U. Klimyk Book 1993 Springer Science+Business M
出版日期Book 1993
关键词Group representation; Jacobi; differential equation; integral transform; lie group
版次1
doihttps://doi.org/10.1007/978-94-017-2883-6
isbn_softcover978-90-481-4103-6
isbn_ebook978-94-017-2883-6Series ISSN 0169-6378
issn_series 0169-6378
copyrightSpringer Science+Business Media Dordrecht 1993
The information of publication is updating

书目名称Representation of Lie Groups and Special Functions影响因子(影响力)




书目名称Representation of Lie Groups and Special Functions影响因子(影响力)学科排名




书目名称Representation of Lie Groups and Special Functions网络公开度




书目名称Representation of Lie Groups and Special Functions网络公开度学科排名




书目名称Representation of Lie Groups and Special Functions被引频次




书目名称Representation of Lie Groups and Special Functions被引频次学科排名




书目名称Representation of Lie Groups and Special Functions年度引用




书目名称Representation of Lie Groups and Special Functions年度引用学科排名




书目名称Representation of Lie Groups and Special Functions读者反馈




书目名称Representation of Lie Groups and Special Functions读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:22 | 显示全部楼层
发表于 2025-3-22 00:42:16 | 显示全部楼层
,Representations of Groups, Related to ,(n−1), in Non-Canonical Bases, Special Functions, and IntegrIn the preceding chapter we have considered spherical functions of irreducible representations of .(.) and of related groups with respect to the canonical basis . in ..
发表于 2025-3-22 08:05:17 | 显示全部楼层
,Special Functions Connected with the Groups ,(,), ,(,−1,1) and ,(,−1),The groups .(n), .(n - 1,1) and related homogeneous spaces.
发表于 2025-3-22 09:58:04 | 显示全部楼层
发表于 2025-3-22 16:44:59 | 显示全部楼层
Special Functions Connected with ,(,) and with Related Groups,l transformations in .., that is, linear transformations in .. preserving (.), and .(.) denotes the subgroup of unimodular transformations from .(.). The groups .(.) and .(.) are compact, .(.) is connected and .(.)consists of two connected components .(.)and ...(.), where .. = diag(1,...,1, −1).
发表于 2025-3-22 21:06:29 | 显示全部楼层
978-90-481-4103-6Springer Science+Business Media Dordrecht 1993
发表于 2025-3-22 21:29:24 | 显示全部楼层
Representation of Lie Groups and Special Functions978-94-017-2883-6Series ISSN 0169-6378
发表于 2025-3-23 01:43:29 | 显示全部楼层
0169-6378 Overview: 978-90-481-4103-6978-94-017-2883-6Series ISSN 0169-6378
发表于 2025-3-23 09:22:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 02:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表