找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation of Lie Groups and Special Functions; Volume 3: Classical N. Ja. Vilenkin,A. U. Klimyk Book 1992 Springer Science+Business M

[复制链接]
楼主: oxidation
发表于 2025-3-23 11:27:35 | 显示全部楼层
Semisimple Lie Groups and Related Homogeneous Spaces,al simple Lie groups and of corresponding inhomogeneous groups. In the next chapters we study special functions related to non-degenerate series of representations. These special functions depend on many variables and in some cases it is convenient to consider them as functions of matrix argument or
发表于 2025-3-23 16:44:57 | 显示全部楼层
Group Representations and Special Functions of a Matrix Argument, it let us note that every matrix Λ ∈ P.(.) is representable in the form Λ = .*, where . ∈ ._(., .). and . is the group of diagonal matrices diag (..,... , ..) with .. > 0. We transfer the operation of group multiplication, defined in ._(., .)., into the set P.(.). Namely, for Λ = ....*, . = .... we
发表于 2025-3-23 21:52:31 | 显示全部楼层
,Representations in the Gel’fand-Tsetlin Basis and Special Functions,of this representation. The restriction of .. onto the subgroup .(. − 1, ℂ) is reducible. It decomposes into the direct sum of all irreducible representations .. of .(. − 1, ℂ) with highest weights .′ = (..,..., ..) for which the betweenness conditions . are satisfied. Each of these representations
发表于 2025-3-24 00:13:03 | 显示全部楼层
发表于 2025-3-24 06:13:38 | 显示全部楼层
发表于 2025-3-24 08:35:48 | 显示全部楼层
978-3-031-64599-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-24 13:58:40 | 显示全部楼层
发表于 2025-3-24 16:26:21 | 显示全部楼层
0302-9743 France, during April 20-22, 2022. .The 31 papers included in this book were carefully reviewed and selected from 73 submissions. They deal with high quality, novel research in intelligent data analysis. .978-3-031-01332-4978-3-031-01333-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-24 22:19:40 | 显示全部楼层
发表于 2025-3-25 00:57:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 17:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表