找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation Discovery using Harmonic Analysis; Sridhar Mahadevan Book 2008 Springer Nature Switzerland AG 2008

[复制链接]
查看: 40598|回复: 41
发表于 2025-3-21 18:25:03 | 显示全部楼层 |阅读模式
书目名称Representation Discovery using Harmonic Analysis
编辑Sridhar Mahadevan
视频video
丛书名称Synthesis Lectures on Artificial Intelligence and Machine Learning
图书封面Titlebook: Representation Discovery using Harmonic Analysis;  Sridhar Mahadevan Book 2008 Springer Nature Switzerland AG 2008
描述Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-3-031-01546-5
isbn_softcover978-3-031-00418-6
isbn_ebook978-3-031-01546-5Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2008
The information of publication is updating

书目名称Representation Discovery using Harmonic Analysis影响因子(影响力)




书目名称Representation Discovery using Harmonic Analysis影响因子(影响力)学科排名




书目名称Representation Discovery using Harmonic Analysis网络公开度




书目名称Representation Discovery using Harmonic Analysis网络公开度学科排名




书目名称Representation Discovery using Harmonic Analysis被引频次




书目名称Representation Discovery using Harmonic Analysis被引频次学科排名




书目名称Representation Discovery using Harmonic Analysis年度引用




书目名称Representation Discovery using Harmonic Analysis年度引用学科排名




书目名称Representation Discovery using Harmonic Analysis读者反馈




书目名称Representation Discovery using Harmonic Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:12:20 | 显示全部楼层
发表于 2025-3-22 00:30:38 | 显示全部楼层
发表于 2025-3-22 06:08:41 | 显示全部楼层
发表于 2025-3-22 10:41:04 | 显示全部楼层
发表于 2025-3-22 16:05:47 | 显示全部楼层
Vector Spaces,presentations depend on the choice of bases over the input (row) and output (column) vector spaces. This explicit dependence of a representation on a choice of basis will turn out to be essential later in the book.
发表于 2025-3-22 20:05:02 | 显示全部楼层
发表于 2025-3-22 22:19:05 | 显示全部楼层
Case Study: Natural Language,where the rows represent words, and the columns represent documents. This approach can be viewed as Fourier analysis applied to text, since in this case SVD finds eigenvector bases for the row space and column space of the term-document matrix.
发表于 2025-3-23 02:51:30 | 显示全部楼层
发表于 2025-3-23 08:39:40 | 显示全部楼层
Overview,lds, from perception and problem-solving to decision-making and robotics. The goal of designing agents that can discover novel representations from their environment has been a longstanding challenge. Amarel [2] pioneered the view that agents should analyze state spaces to determine geometric proper
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 22:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表