用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Remote Sensing Intelligent Interpretation for Geology; From Perspective of Weitao Chen,Xianju Li,Lizhe Wang Book 2024 The Editor(s) (if ap

[复制链接]
楼主: 小故障
发表于 2025-3-23 12:48:42 | 显示全部楼层
发表于 2025-3-23 17:37:07 | 显示全部楼层
发表于 2025-3-23 20:08:31 | 显示全部楼层
发表于 2025-3-23 23:09:18 | 显示全部楼层
Geological Lithology Semantic Segmentation Based on Deep Learning Method,achieved easily by working on remote sensing images with classification approaches. Deep learning has made remarkable achievements in processing remote sensing data as it can usually indicate the better accuracy than traditional methods. This chapter proposed the deep learning models for semantic se
发表于 2025-3-24 05:34:39 | 显示全部楼层
Remote Sensing Lithology Intelligent Segmentation Based on Multi-source Data,pment and mountain shadows. In addition, there are differences in the preservation information of multi-source remote sensing data. This article focuses on the problem of traditional models and single remote sensing data which are difficult to effectively extract geological features. A remote sensin
发表于 2025-3-24 07:13:06 | 显示全部楼层
发表于 2025-3-24 11:53:02 | 显示全部楼层
发表于 2025-3-24 15:53:41 | 显示全部楼层
Lithological Scene Classification Based on Model Migration and Fine-Tuning Strategy, not available in another domain. To tackle the problem of difficult identification of unabled lithology in cross regional prediction using conventional models, this article is based on the idea of transfer learning. To develop an improved dense connected network for the source domain and fine-tune
发表于 2025-3-24 20:58:57 | 显示全部楼层
发表于 2025-3-25 00:38:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-12 19:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表