找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning Algorithms: Analysis and Applications; Boris Belousov,Hany Abdulsamad,Jan Peters Book 2021 The Editor(s) (if applic

[复制链接]
楼主: Hayes
发表于 2025-3-28 16:00:37 | 显示全部楼层
1860-949X e field.This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is pl
发表于 2025-3-28 20:19:26 | 显示全部楼层
发表于 2025-3-29 01:34:00 | 显示全部楼层
Fisher Information Approximations in Policy Gradient Methodsffline estimation methods as well as surveys more recent developments such as the expectation approximation technique based on the Kronecker-factored approximate curvature (KFAC) method and extensions thereof. The trade-offs introduced by the approximations in the context of policy gradient methods are discussed.
发表于 2025-3-29 05:01:44 | 显示全部楼层
发表于 2025-3-29 09:29:00 | 显示全部楼层
Challenges of Model Predictive Control in a Black Box Environmentg prominently discussed in the corressponding papers are crucial to the algorithm. In this paper, we review recent approaches revolving around the use of MPC for model-based RL in order to connect them to the conceptual problems that need to be tackled when using MPC in a learning scenario.
发表于 2025-3-29 14:52:51 | 显示全部楼层
发表于 2025-3-29 17:36:19 | 显示全部楼层
Model-Free Deep Reinforcement Learning—Algorithms and Applicationslyzed and associated with new improvements in order to overcome previous problems. Further, the survey shows application scenarios for difficult domains, including the game of Go, Starcraft II, Dota 2, and the Rubik’s Cube.
发表于 2025-3-29 22:09:23 | 显示全部楼层
Actor vs Critic: Learning the Policy or Learning the Valuein circumstances. In this paper, we will compare these methods and identify their advantages and disadvantages. Moreover, we will illustrate the insights obtained using the examples of REINFORCE, DQN and DDPG for a better understanding. Finally, we will give brief suggestions about which approach to use under certain conditions.
发表于 2025-3-30 03:14:46 | 显示全部楼层
Distributed Methods for Reinforcement Learning Surveyroaches. We introduce the general principle and problem formulation, and discuss the historical development of distributed methods. We also analyze technical challenges, such as process communication and memory requirements, and give an overview of different application areas.
发表于 2025-3-30 07:25:37 | 显示全部楼层
er auf dem Gebiet Automotive.Includes supplementary material.Kraftfahrzeuge bestimmen wesentlich unser tägliches Leben. Ihre Entwicklung ist eng verknüpft mit der jeweiligen wirtschaftlichen, politischen und sozialen Situation. Eine wichtige Rolle spielen die wissenschaftlichen Methoden und Erkenntn
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-15 03:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表