找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning; Theory and Python Im Zhiqing Xiao Book 2024 Beijing Huazhang Graphics & Information Co., Ltd, China Machine Press 2

[复制链接]
楼主: deflate
发表于 2025-3-26 23:42:16 | 显示全部楼层
Introduction of Reinforcement Learning (RL), is a type of machine learning task where decisionmakers try to maximize long-term rewards or minimize long-term costs. In an RL task, decision-makers observe the environments, and act according to the observations. After the actions, the decision-makers can get rewards or costs.
发表于 2025-3-27 02:33:02 | 显示全部楼层
发表于 2025-3-27 07:22:47 | 显示全部楼层
发表于 2025-3-27 13:14:54 | 显示全部楼层
发表于 2025-3-27 14:15:29 | 显示全部楼层
发表于 2025-3-27 20:56:28 | 显示全部楼层
发表于 2025-3-28 01:08:03 | 显示全部楼层
PG: Policy Gradient,The policy optimization algorithms in Chaps. 2–6 use the optimal value estimates to find the optimal policy, so those algorithms are called optimal value algorithm. However, estimating optimal values are not necessary for policy optimization.
发表于 2025-3-28 04:46:22 | 显示全部楼层
,AC: Actor–Critic,Actor–critic method combines the policy gradient method and bootstrapping. On the one hand, it uses policy gradient theorem to calculate policy gradient and update parameters. This part is called actor. On the other hand, it estimates values, and uses the value estimate to bootstrap.
发表于 2025-3-28 07:25:49 | 显示全部楼层
发表于 2025-3-28 13:00:32 | 显示全部楼层
Maximum-Entropy RL,This chapter introduces maximum-entropy RL, which uses the concept of entropy in information theory to encourage exploration.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 07:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表