找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regularity and Substructures of Hom; Friedrich Kasch,Adolf Mader Book 2009 Birkhäuser Basel 2009 Abelian group.algebra.domain decompositio

[复制链接]
查看: 29345|回复: 44
发表于 2025-3-21 18:56:52 | 显示全部楼层 |阅读模式
书目名称Regularity and Substructures of Hom
编辑Friedrich Kasch,Adolf Mader
视频video
概述Readable text with new concepts opening new avenues for research.Old and numerous new results in self-contained form.Results never published in book form.Extension of the well-known and important conc
丛书名称Frontiers in Mathematics
图书封面Titlebook: Regularity and Substructures of Hom;  Friedrich Kasch,Adolf Mader Book 2009 Birkhäuser Basel 2009 Abelian group.algebra.domain decompositio
描述Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26])
出版日期Book 2009
关键词Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
版次1
doihttps://doi.org/10.1007/978-3-7643-9990-0
isbn_softcover978-3-7643-9989-4
isbn_ebook978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkhäuser Basel 2009
The information of publication is updating

书目名称Regularity and Substructures of Hom影响因子(影响力)




书目名称Regularity and Substructures of Hom影响因子(影响力)学科排名




书目名称Regularity and Substructures of Hom网络公开度




书目名称Regularity and Substructures of Hom网络公开度学科排名




书目名称Regularity and Substructures of Hom被引频次




书目名称Regularity and Substructures of Hom被引频次学科排名




书目名称Regularity and Substructures of Hom年度引用




书目名称Regularity and Substructures of Hom年度引用学科排名




书目名称Regularity and Substructures of Hom读者反馈




书目名称Regularity and Substructures of Hom读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:16:26 | 显示全部楼层
https://doi.org/10.1007/978-3-7643-9990-0Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
发表于 2025-3-22 01:42:46 | 显示全部楼层
978-3-7643-9989-4Birkhäuser Basel 2009
发表于 2025-3-22 06:38:00 | 显示全部楼层
Regularity and Substructures of Hom978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
发表于 2025-3-22 11:26:48 | 显示全部楼层
发表于 2025-3-22 13:30:30 | 显示全部楼层
Regularity in Modules, = R where R acts by left multiplication on R and we obtain the S-R-bimodule Hom.(R, M) where S := End(M.). Of course, M also is an S-R-bimodule. The first basic observation that allows us to transfer our previous more general results to the module M is the routine fact that . is a bimodule isomorphism.
发表于 2025-3-22 17:14:35 | 显示全部楼层
Regular Homomorphisms,Let . be a ring with 1 ∈ . and denote by Mod-. the category of all unitary right .-modules. For arbitrary . ∈ Mod ., let . Then . is an .-bimodule.
发表于 2025-3-23 01:13:00 | 显示全部楼层
Indecomposable Modules,A module . is . (or simply .) if and only if 0 and . are the only direct summands of . This means that 0 and 1 are the only idempotents in End(M.). We now study the situation that Reg(.) ≠ 0 and one of the modules . or . is indecomposable. It turns out that much can be said under assumptions weaker than Reg(.) ≠ 0.
发表于 2025-3-23 05:03:39 | 显示全部楼层
发表于 2025-3-23 08:11:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 13:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表