找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regularity and Complexity in Dynamical Systems; Albert C. J. Luo Book 2012 Springer Science+Business Media, LLC 2012 Discontinuous dynamic

[复制链接]
查看: 37513|回复: 39
发表于 2025-3-21 18:34:36 | 显示全部楼层 |阅读模式
书目名称Regularity and Complexity in Dynamical Systems
编辑Albert C. J. Luo
视频videohttp://file.papertrans.cn/826/825559/825559.mp4
概述Illustrates new concepts and methodology in discontinuous dynamical systems.Uses different ideas to describe complicated dynamical systems in real worlds.Discusses the mechanism of chaos and diffusion
丛书名称Nonlinear Systems and Complexity
图书封面Titlebook: Regularity and Complexity in Dynamical Systems;  Albert C. J. Luo Book 2012 Springer Science+Business Media, LLC 2012 Discontinuous dynamic
描述.Regularity and Complexity in Dynamical Systems. describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book, an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems. .
出版日期Book 2012
关键词Discontinuous dynamical systems; Grazing bifurcation; Impulsive systems; Mapping dynamics; Strange attra
版次1
doihttps://doi.org/10.1007/978-1-4614-1524-4
isbn_softcover978-1-4614-6168-5
isbn_ebook978-1-4614-1524-4Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

书目名称Regularity and Complexity in Dynamical Systems影响因子(影响力)




书目名称Regularity and Complexity in Dynamical Systems影响因子(影响力)学科排名




书目名称Regularity and Complexity in Dynamical Systems网络公开度




书目名称Regularity and Complexity in Dynamical Systems网络公开度学科排名




书目名称Regularity and Complexity in Dynamical Systems被引频次




书目名称Regularity and Complexity in Dynamical Systems被引频次学科排名




书目名称Regularity and Complexity in Dynamical Systems年度引用




书目名称Regularity and Complexity in Dynamical Systems年度引用学科排名




书目名称Regularity and Complexity in Dynamical Systems读者反馈




书目名称Regularity and Complexity in Dynamical Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:10:22 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-1524-4Discontinuous dynamical systems; Grazing bifurcation; Impulsive systems; Mapping dynamics; Strange attra
发表于 2025-3-22 02:18:48 | 显示全部楼层
978-1-4614-6168-5Springer Science+Business Media, LLC 2012
发表于 2025-3-22 06:23:00 | 显示全部楼层
发表于 2025-3-22 12:47:30 | 显示全部楼层
Chaos and Multifractality,resented for nonrandom and random fractals. The multifractals based on the single- and joint-multifractal measures will be presented. Multifractality of chaos generated by period-doubling bifurcation will be presented via a geometrical approach and self-similarity. Fractality of hyperbolic chaos will be discussed.
发表于 2025-3-22 14:28:17 | 显示全部楼层
Albert C. J. LuoIllustrates new concepts and methodology in discontinuous dynamical systems.Uses different ideas to describe complicated dynamical systems in real worlds.Discusses the mechanism of chaos and diffusion
发表于 2025-3-22 19:57:17 | 显示全部楼层
发表于 2025-3-22 23:15:55 | 显示全部楼层
发表于 2025-3-23 04:25:03 | 显示全部楼层
Complete Dynamics and Synchronization,map is investigated as an example. The companion and synchronization of discrete dynamical systems will be introduced, and the corresponding conditions are developed. The synchronization dynamics of Duffing and Henon maps will be discussed.
发表于 2025-3-23 08:32:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 02:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表