找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regularity Theory for Mean-Field Game Systems; Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish

[复制链接]
查看: 52372|回复: 46
发表于 2025-3-21 20:03:58 | 显示全部楼层 |阅读模式
书目名称Regularity Theory for Mean-Field Game Systems
编辑Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan
视频video
概述Details key elements of the regularity theory for mean-field games.Presents a series of techniques for well-posedness.Explores stationary and time-dependent MFGs through a series of a-priori estimates
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Regularity Theory for Mean-Field Game Systems;  Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish
描述Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
出版日期Book 2016
关键词Fokker-Planck equation; Hamilton-Jacobi equation; Lax-Hopf estimates; Logarithmic non-linearities; mean-
版次1
doihttps://doi.org/10.1007/978-3-319-38934-9
isbn_softcover978-3-319-38932-5
isbn_ebook978-3-319-38934-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Regularity Theory for Mean-Field Game Systems影响因子(影响力)




书目名称Regularity Theory for Mean-Field Game Systems影响因子(影响力)学科排名




书目名称Regularity Theory for Mean-Field Game Systems网络公开度




书目名称Regularity Theory for Mean-Field Game Systems网络公开度学科排名




书目名称Regularity Theory for Mean-Field Game Systems被引频次




书目名称Regularity Theory for Mean-Field Game Systems被引频次学科排名




书目名称Regularity Theory for Mean-Field Game Systems年度引用




书目名称Regularity Theory for Mean-Field Game Systems年度引用学科排名




书目名称Regularity Theory for Mean-Field Game Systems读者反馈




书目名称Regularity Theory for Mean-Field Game Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:31:52 | 显示全部楼层
https://doi.org/10.1007/978-3-319-38934-9Fokker-Planck equation; Hamilton-Jacobi equation; Lax-Hopf estimates; Logarithmic non-linearities; mean-
发表于 2025-3-22 04:13:38 | 显示全部楼层
发表于 2025-3-22 06:06:26 | 显示全部楼层
发表于 2025-3-22 09:35:27 | 显示全部楼层
发表于 2025-3-22 15:27:28 | 显示全部楼层
Explicit Solutions, Special Transformations, and Further Examples,Few mean-field games can be solved explicitly. However, examples for which closed solutions are known illustrate essential features of the theory.
发表于 2025-3-22 18:40:37 | 显示全部楼层
,Estimates for the Hamilton–Jacobi Equation,In this chapter, we examine a priori estimates for solutions of Hamilton–Jacobi equations.
发表于 2025-3-22 22:27:27 | 显示全部楼层
,Estimates for the Transport and Fokker–Planck Equations,In this chapter, we turn our attention to the second equation in the MFG system, the transport equation, . or the Fokker–Planck equation, . where . is a smooth vector field. Both (.) and (.) are equipped with the initial condition
发表于 2025-3-23 04:39:00 | 显示全部楼层
发表于 2025-3-23 09:30:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 08:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表