找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reflection Groups and Invariant Theory; Richard Kane,Jonathan Borwein,Peter Borwein Textbook 2001 Springer Science+Business Media New York

[复制链接]
楼主: antihistamine
发表于 2025-3-28 17:11:18 | 显示全部楼层
发表于 2025-3-28 19:11:07 | 显示全部楼层
Richard Kane,Jonathan Borwein,Peter Borwein with fault analysis in public key cryptography, with chapters dedicated to classical RSA and RSA-CRT implementations, elliptic curve cryptosystems and countermeasures using fault detection, devices resilient t978-3-642-43677-2978-3-642-29656-7Series ISSN 1619-7100 Series E-ISSN 2197-845X
发表于 2025-3-29 01:28:40 | 显示全部楼层
Richard Kane,Jonathan Borwein,Peter Borwein with fault analysis in public key cryptography, with chapters dedicated to classical RSA and RSA-CRT implementations, elliptic curve cryptosystems and countermeasures using fault detection, devices resilient t978-3-642-43677-2978-3-642-29656-7Series ISSN 1619-7100 Series E-ISSN 2197-845X
发表于 2025-3-29 03:17:18 | 显示全部楼层
发表于 2025-3-29 10:40:38 | 显示全部楼层
Introduction: Reflection groups and invariant theoryding its orthogonal vectors to their negatives. A . is, then, any group of transformations generated by such reflections. The purpose of this book is to study such groups and their associated invariant theory, outlining the deep and elegant theory that they possess.
发表于 2025-3-29 15:03:49 | 显示全部楼层
发表于 2025-3-29 17:52:51 | 显示全部楼层
Root systems into linear algebra of the geometric configuration formed by the reflecting hyperplanes associated with a reflection group. This reformulation is extremely important. The use of linear algebra enables us to analyze finite reflection groups with great efficiency. All of Chapters 2, 3, 4 and 6 will b
发表于 2025-3-29 20:24:46 | 显示全部楼层
发表于 2025-3-30 00:38:02 | 显示全部楼层
Length The main purpose of this chapter is to introduce the concept of length in a reflection group and to explain how length is related to the action of the reflection group on its root system and on its Weyl chambers. The main application of length will come in Chapter 6, when we prove that a finite Euc
发表于 2025-3-30 08:03:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 13:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表