找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recent Developments of Mathematical Fluid Mechanics; Herbert Amann,Yoshikazu Giga,Masao Yamazaki Book 2016 Springer Basel 2016 Euler equat

[复制链接]
楼主: Retina
发表于 2025-3-25 03:46:40 | 显示全部楼层
Existence of Weak Solutions for a Diffuse Interface Model of Power-Law Type Two-Phase Flows,lt by the authors about existence of weak solutions for diffuse interface model of power-law type two-phase flows and give a sketch of its proof. The latter part is a summary of Abels et al. (Nonlinear Anal Real World Appl 15:149–157, 2014).
发表于 2025-3-25 10:02:31 | 显示全部楼层
发表于 2025-3-25 11:47:15 | 显示全部楼层
发表于 2025-3-25 17:20:26 | 显示全部楼层
发表于 2025-3-25 23:47:15 | 显示全部楼层
Thermodynamically Consistent Modeling for Dissolution/Growth of Bubbles in an Incompressible Solvena fully compressible version, both for the liquid and the gas phase so that the entropy principle can be easily evaluated. This yields a full PDE system for a compressible two-phase fluid with mass transfer of the gaseous species. Then the passage to an incompressible solvent in the liquid phase is
发表于 2025-3-26 01:03:32 | 显示全部楼层
发表于 2025-3-26 07:06:57 | 显示全部楼层
Inhomogeneous Boundary Value Problems in Spaces of Higher Regularity, known for the .-realization, . > 0, of a parameter-elliptic boundary value problem. We discuss a priori estimates and the generation of analytic semigroups for these realizations in various cases. The Banach scale method can be applied for homogeneous boundary conditions if the right-hand side sati
发表于 2025-3-26 10:01:50 | 显示全部楼层
Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criributions. It is a famous open problem whether weak solutions are unique and smooth. A main step in the analysis of this problem is to show that the given weak solution is a strong one in the sense of J. Serrin, i.e., . where . > 2, . > 3 and .. In this review we report on recent results on this pro
发表于 2025-3-26 16:07:42 | 显示全部楼层
发表于 2025-3-26 19:05:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 02:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表