找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recent Advances in Reinforcement Learning; 9th European Worksho Scott Sanner,Marcus Hutter Conference proceedings 2012 Springer-Verlag Berl

[复制链接]
楼主: ODDS
发表于 2025-3-26 22:09:35 | 显示全部楼层
Robust Bayesian Reinforcement Learning through Tight Lower Boundses of interest, such as reinforcement learning problems. While utility bounds are known to exist for this problem, so far none of them were particularly tight. In this paper, we show how to efficiently calculate a lower bound, which corresponds to the utility of a near-optimal . policy for the decis
发表于 2025-3-27 03:11:47 | 显示全部楼层
Active Learning of MDP Modelsnt rewards to be used in the decision-making process. As computing the optimal Bayesian value function is intractable for large horizons, we use a simple algorithm to approximately solve this optimization problem. Despite the sub-optimality of this technique, we show experimentally that our proposal is efficient in a number of domains.
发表于 2025-3-27 08:12:05 | 显示全部楼层
Recursive Least-Squares Learning with Eligibility Tracessions of FPKF and GPTD/KTD. We describe their recursive implementation, discuss their convergence properties, and illustrate their behavior experimentally. Overall, our study suggests that the state-of-art LSTD(.) [21] remains the best least-squares algorithm.
发表于 2025-3-27 09:45:50 | 显示全部楼层
发表于 2025-3-27 15:14:28 | 显示全部楼层
发表于 2025-3-27 21:37:59 | 显示全部楼层
Goal-Directed Online Learning of Predictive Models efficient. Our algorithm interleaves online learning of the models, with estimation of the value function. The framework is applicable to a variety of important learning problems, including scenarios such as apprenticeship learning, model customization, and decision-making in non-stationary domains.
发表于 2025-3-27 22:29:19 | 显示全部楼层
Gradient Based Algorithms with Loss Functions and Kernels for Improved On-Policy Controlnd seems to come with empirical advantages. We further extend a previous gradient based algorithm to the case of full control, by using generalized policy iteration. Theoretical properties of these algorithms are studied in a companion paper.
发表于 2025-3-28 04:22:06 | 显示全部楼层
Automatic Construction of Temporally Extended Actions for MDPs Using Bisimulation Metricse states in a small MDP and the states in a large MDP, which we want to solve. The . of this metric is then used to completely define a set of options for the large MDP. We demonstrate empirically that our approach is able to improve the speed of reinforcement learning, and is generally not sensitive to parameter tuning.
发表于 2025-3-28 07:35:04 | 显示全部楼层
发表于 2025-3-28 10:55:48 | 显示全部楼层
Value Function Approximation through Sparse Bayesian Modelingl strategy is adopted. A number of experiments have been conducted on both simulated and real environments, where we took promising results in comparison with another Bayesian approach that uses Gaussian processes.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 09:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表