找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recent Advances in Big Data and Deep Learning; Proceedings of the I Luca Oneto,Nicolò Navarin,Davide Anguita Conference proceedings 2020 Sp

[复制链接]
楼主: Chylomicron
发表于 2025-3-28 16:50:38 | 显示全部楼层
发表于 2025-3-28 21:42:23 | 显示全部楼层
发表于 2025-3-29 01:58:50 | 显示全部楼层
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective FunctionWe consider the problem of finding local minimizers in non-convex and non-smooth optimization. Under the assumption of strict saddle points, positive results have been derived for first-order methods. We present the first known results for the non-smooth case, which requires different analysis and a different algorithm.
发表于 2025-3-29 06:09:45 | 显示全部楼层
Luca Oneto,Nicolò Navarin,Davide AnguitaOffers recent research in Big Data and Deep Learning.Presents contributions from researchers and professionals in Big Data, Deep Learning and related areas.Includes Proceedings of the INNS Big Data an
发表于 2025-3-29 08:04:27 | 显示全部楼层
Proceedings of the International Neural Networks Societyhttp://image.papertrans.cn/r/image/822617.jpg
发表于 2025-3-29 11:31:48 | 显示全部楼层
https://doi.org/10.1007/978-3-030-16841-4Big Data; Deep Learning; Neural Networks; INNS Big Data and Deep Learning 2019; INNSBDDL2019
发表于 2025-3-29 16:51:09 | 显示全部楼层
978-3-030-16840-7Springer Nature Switzerland AG 2020
发表于 2025-3-29 22:43:59 | 显示全部楼层
发表于 2025-3-30 03:50:42 | 显示全部楼层
Dropout for Recurrent Neural Networks,opout algorithms have not been tested against one another and the naive algorithm under identical experimental conditions. This paper compares all of these algorithms and finds that the naive approach performed as well as or better than the specialised Dropout algorithms.
发表于 2025-3-30 04:49:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-16 08:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表