找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Real Mathematical Analysis; Charles Chapman Pugh Textbook 20021st edition Springer Science+Business Media New York 2002 Real Mathematical

[复制链接]
查看: 51856|回复: 35
发表于 2025-3-21 19:39:30 | 显示全部楼层 |阅读模式
书目名称Real Mathematical Analysis
编辑Charles Chapman Pugh
视频video
概述The exposition is informal and relaxed, with many helpful asides, and examples.Contains an excellent selection of more than 500 exercises.Ideal for self-study
丛书名称Undergraduate Texts in Mathematics
图书封面Titlebook: Real Mathematical Analysis;  Charles Chapman Pugh Textbook 20021st edition Springer Science+Business Media New York 2002 Real Mathematical
描述Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is pure mathematics, and I hope it appeals to you, the budding pure mathematician. Berkeley, California, USA CHARLES CHAPMAN PUGH Contents 1 Real Numbers 1 1 Preliminaries 1 2 Cuts . . . . . 10 3 Euclidean Space . 21 4 Cardinality . . . 28 5* Comparing Cardinalities 34 6* The Skeleton of Calculus 36 Exercises . . . . . . . . 40 2 A Taste of Topology 51 1 Metric Space Concepts 51 2 Compactness 76 3 Connectedness 82 4 Coverings . . . 88 5 Cantor Sets . . 95 6* Cantor Set Lore 99 7* Completion 108 Exercises . . . 115 x Contents 3 Functions of a Real Variable 139 1 Differentiation. . . . 139 2 Riemann Integration 154 Series . . 179 3 Exercises 186 4 Function Spaces 201 1 Uniform Convergence and CO[a, b] 201 2 Power Series . . . . . . . . . . . . 211 3 Compactness and Equicontinuity in CO . 213 4 Uniform Approximation in CO 217 Contractions and ODE‘s . . . . . . . . 228 5
出版日期Textbook 20021st edition
关键词Real Mathematical Analysis; calculus; integral; mathematical analysis; real analysis; real number
版次1
doihttps://doi.org/10.1007/978-0-387-21684-3
isbn_softcover978-1-4419-2941-9
isbn_ebook978-0-387-21684-3Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Real Mathematical Analysis影响因子(影响力)




书目名称Real Mathematical Analysis影响因子(影响力)学科排名




书目名称Real Mathematical Analysis网络公开度




书目名称Real Mathematical Analysis网络公开度学科排名




书目名称Real Mathematical Analysis被引频次




书目名称Real Mathematical Analysis被引频次学科排名




书目名称Real Mathematical Analysis年度引用




书目名称Real Mathematical Analysis年度引用学科排名




书目名称Real Mathematical Analysis读者反馈




书目名称Real Mathematical Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:45:33 | 显示全部楼层
发表于 2025-3-22 01:21:18 | 显示全部楼层
Functions of a Real Variable,the change in the independent variable ., while Δ. (.) — f (.) is the resulting change in the dependent variable . (.). Differentiability at . means that . We begin by reviewing the proofs of some standard calculus facts.
发表于 2025-3-22 05:24:12 | 显示全部楼层
发表于 2025-3-22 12:41:58 | 显示全部楼层
发表于 2025-3-22 16:56:33 | 显示全部楼层
发表于 2025-3-22 17:29:23 | 显示全部楼层
Function Spaces,unction? What should it mean that they get closer and closer to a limit function? The simplest idea is that a sequence of functions .. converges to a limit function . if for each ., the values ..(.) converge to . (.) as . → ∞. This is called pointwise convergence: a sequence of functions .. : [.] →
发表于 2025-3-22 22:17:53 | 显示全部楼层
发表于 2025-3-23 05:03:20 | 显示全部楼层
发表于 2025-3-23 07:28:05 | 显示全部楼层
0172-6056 2 Power Series . . . . . . . . . . . . 211 3 Compactness and Equicontinuity in CO . 213 4 Uniform Approximation in CO 217 Contractions and ODE‘s . . . . . . . . 228 5 978-1-4419-2941-9978-0-387-21684-3Series ISSN 0172-6056 Series E-ISSN 2197-5604
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 11:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表