找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reachability Problems; 16th International C Anthony W. Lin,Georg Zetzsche,Igor Potapov Conference proceedings 2022 The Editor(s) (if applic

[复制链接]
楼主: 小费
发表于 2025-3-26 23:21:31 | 显示全部楼层
发表于 2025-3-27 04:02:17 | 显示全部楼层
Unambiguity and Fewness for Nonuniform Families of Polynomial-Size Nondeterministic Finite Automata the past literature to solve nonuniform families of promise decision problems. In such a nonuniform family, we focus our attention, in particular, on the variants of nondeterministic finite automata, which have at most “one” (unique or unambiguous), “polynomially many” (few) accepting computation p
发表于 2025-3-27 08:06:04 | 显示全部楼层
发表于 2025-3-27 09:52:12 | 显示全部楼层
发表于 2025-3-27 16:18:04 | 显示全部楼层
发表于 2025-3-27 20:56:39 | 显示全部楼层
Subsequences in Bounded Ranges: Matching and Analysis Problemsprecisely, we consider the problem of deciding, given a number . (defining a range-bound) and two words . and ., whether there exists a factor . (or, in other words, a range of length .) of . having . as subsequence (i. e., . occurs as a subsequence in the bounded range .). We give matching upper an
发表于 2025-3-27 23:26:15 | 显示全部楼层
发表于 2025-3-28 03:57:59 | 显示全部楼层
发表于 2025-3-28 10:06:20 | 显示全部楼层
On Higher-Order Reachability Games Vs May Reachabilityndeterminism). We show that reachability games for order-. programs can be reduced to may-reachability problems for order-(.) programs, and vice versa. We formalize the reductions by using higher-order fixpoint logic and prove their correctness. We also discuss applications to higher-order program verification.
发表于 2025-3-28 12:15:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-2 09:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表