找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Rational Matrix Equations in Stochastic Control; Tobias Damm Book 2004 Springer-Verlag Berlin Heidelberg 2004 Generalized Lyapunov Equatio

[复制链接]
楼主: Autonomous
发表于 2025-3-23 10:10:12 | 显示全部楼层
Solution of the Riccati equation,an abstract form of the Riccati operators met in the Sections 2.1 – 2.3, and the definite and the indefinite constraints mentioned in Remark 2.3.7. Recall that the LQ-stabilization problem and the Bounded Real Lemma lead to Riccati equations with definite constraints, while the disturbance attenuation problem involves an indefinite constraint.
发表于 2025-3-23 17:36:06 | 显示全部楼层
发表于 2025-3-23 21:00:07 | 显示全部楼层
,Newton’s method, neighbourhood of the actual solution. These results can be simplified and generalized, if the underlying space is ordered and the sequence produced by the iteration can be shown to be monotonic and bounded; this can be the case, for instance, if the nonlinear operator satisfies certain convexity conditions (compare [196] and references therein).
发表于 2025-3-24 01:17:00 | 显示全部楼层
发表于 2025-3-24 04:14:38 | 显示全部楼层
Rational Matrix Equations in Stochastic Control978-3-540-40001-1Series ISSN 0170-8643 Series E-ISSN 1610-7411
发表于 2025-3-24 07:23:22 | 显示全部楼层
发表于 2025-3-24 13:10:41 | 显示全部楼层
https://doi.org/10.1007/b10906Generalized Lyapunov Equations; Generalized Riccati Equations; H Infinity Control; Matrix; Positive Oper
发表于 2025-3-24 15:19:24 | 显示全部楼层
Hermitian matrices and Schur complements,Throughout the text, . denotes either the field of real or the field of numbers. For simplicity we write .. rather than .. for the transpose of a real matrix and call a real symmetric matrix Hermitian. At some occasions we still need the notation .. for the transpose of a real or complex matrix – without conjugation.
发表于 2025-3-24 19:08:57 | 显示全部楼层
发表于 2025-3-25 02:50:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 01:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表