找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Random Matrix Theory with an External Source; Edouard Brézin,Shinobu Hikami Book 2016 The Author(s) 2016 Random matrix theory.Gaussian ran

[复制链接]
楼主: 笔记
发表于 2025-3-23 10:01:38 | 显示全部楼层
发表于 2025-3-23 15:40:07 | 显示全部楼层
Open Intersection Numbers,The intersection numbers are defined on the moduli space of Riemann surface with .-marked points and genus .. When Riemann surface is cut and has boundary, the open intersection numbers appear. There appear open strings which touch to the boundary.
发表于 2025-3-23 18:28:24 | 显示全部楼层
,Gromov–Witten Invariants, P, Model,The intersection numbers of .-spin curves is a simple example of more general Gromov–Witten invariants, where the manifold . is a point.
发表于 2025-3-24 01:42:57 | 显示全部楼层
发表于 2025-3-24 03:42:37 | 显示全部楼层
发表于 2025-3-24 08:39:14 | 显示全部楼层
2197-1757 of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..978-981-10-3315-5978-981-10-3316-2Series ISSN 2197-1757 Series E-ISSN 2197-1765
发表于 2025-3-24 11:18:14 | 显示全部楼层
text, Immigration Processes and Health in the U.S.: A Brief History, Alternative and Complementary Medicine, Culture-Specific Diagnoses, Health Determinants, Occupational and Environmental Health, Methodologica978-1-4419-5659-0
发表于 2025-3-24 18:53:17 | 显示全部楼层
Book 2016r characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..
发表于 2025-3-24 20:47:00 | 显示全部楼层
发表于 2025-3-25 02:47:26 | 显示全部楼层
Intersection Numbers of Curves,chy. Kontsevich (Commun Math Phys 147:1–23, 1992, [89]) has proved this conjecture with the use of an Airy matrix model. In addition it has been realized that matrix models of this type are examples of an exact closed/open strings duality (Gaiotto and Rastelli, JHEP 07:053, 2005, [63]).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 09:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表